Skip to main content
Log in

Estimation in generalized bivariate Birnbaum–Saunders models

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

In this paper, we propose two moment-type estimation methods for the parameters of the generalized bivariate Birnbaum–Saunders distribution by taking advantage of some properties of the distribution. The proposed moment-type estimators are easy to compute and always exist uniquely. We derive the asymptotic distributions of these estimators and carry out a simulation study to evaluate the performance of all these estimators. The probability coverages of confidence intervals are also discussed. Finally, two examples are used to illustrate the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aarset MV (1987) How to identify a bathtub shaped hazard rate? IEEE Trans Reliab 36:106–108

    Article  MATH  Google Scholar 

  • Abdous B, Fougères A-L, Ghoudi K (2005) Extreme behaviour for bivariate elliptical distributions. Can J Stat 33:317–334

    Article  MathSciNet  MATH  Google Scholar 

  • Azevedo C, Leiva V, Athayde E, Balakrishnan N (2012) Shape and change point analyses of the Birnbaum–Saunders-\(t\) hazard rate. Comput Stat Data Anal 56:3887–3897

    Article  MathSciNet  MATH  Google Scholar 

  • Balakrishnan N, Zhu X (2014) An improved method of estimation for the parameters of the Birnbaum–Saunders distribution. J Stat Comput Simul 84:2285–2294

    Article  MathSciNet  Google Scholar 

  • Balakrishnan N, Zhu X (2015) Inference for the bivariate Birnbaum–Saunders lifetime regression model and associated inference. Metrika 78:853–872

    Article  MathSciNet  MATH  Google Scholar 

  • Birnbaum ZW, Saunders SC (1969) A new family of life distributions. J Appl Prob 6:319–327

    Article  MathSciNet  MATH  Google Scholar 

  • Cambanis S, Huang S, Simons G (1981) On the theory of elliptically contoured distribution. J Multivar Anal 11:365–385

    Article  MathSciNet  MATH  Google Scholar 

  • Castro-Kuriss C, Leiva V, Athayde E (2014) Graphical tools to assess goodness-of-fit in non-location-scale distributions. Rev Colomb Stad 37:341–365

    Article  MathSciNet  Google Scholar 

  • Díaz-García JA, Leiva V (2005) A new family of life distributions based on elliptically contoured distributions. J Stat Plan Inference 128:445–457

    Article  MathSciNet  MATH  Google Scholar 

  • Fang KT, Kotz S, Ng KW (1990) Symmetric multivariate and related distributions. Chapman and Hall, London

    Book  MATH  Google Scholar 

  • Fisher RA (1921) Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Metron 1:3–32

    MathSciNet  Google Scholar 

  • Johnson RA, Wichern DW (1999) Applied multivariate analysis, 4th edn. Prentice-Hall, New Jersey

    MATH  Google Scholar 

  • Kazemi MR, Jafari AA (2015) Comparing seventeen interval estimates for a bivariate normal correlation coefficient. J Stat Appl Prob Lett 2:1–13

    Google Scholar 

  • Krishnamoorthy K, Xia Y (2007) Inferences on correlation coefficients: one-sample, independent and correlated cases. J Stat Plan Inference 137:2362–2379

    Article  MathSciNet  MATH  Google Scholar 

  • Kundu D, Balakrishnan N, Jamalizadeh A (2010) Bivariate Birnbaum–Saunders distribution and associated inference. J Multivar Anal 101:113–125

    Article  MathSciNet  MATH  Google Scholar 

  • Kundu D, Balakrishnan N, Jamalizadeh A (2013) Generalized multivariate Birnbaum–Saunders distributions and related inferential issues. J Multivar Anal 116:230–244

    Article  MathSciNet  MATH  Google Scholar 

  • Leiva V, Saulo H, Leao J, Marchant C (2014) A family of autoregressive conditional duration models applied to financial data. Comput Stat Data Anal 9:175–191

    Article  MathSciNet  Google Scholar 

  • Nadarajah S, Kotz S (2008) Estimation methods for the multivariate \(t\) distribution. Acta Appl Math 102:99–118

    Article  MathSciNet  MATH  Google Scholar 

  • Ng HKT, Kundu D, Balakrishnan N (2003) Modified moment estimation for the two-parameter Birnbaum–Saunders distribution. Comput Stat Data Anal 43:283–298

    Article  MathSciNet  MATH  Google Scholar 

  • Wallgren CM (1980) The distribution of the product of two correlated \(t\) variates. J Am Stat Assoc 75:996–1000

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Our sincere thanks go to two anonymous referees for their constructive comments on an earlier version of this manuscript which resulted in this improved version. This research work was partially supported by CNPq and CAPES Grants, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helton Saulo.

Appendices

Appendix 1: Asymptotic distribution of the MMEs

Let \({\varvec{T}}=(T_{1},T_{2})^{\top }\) follow a \({\mathrm{GBBS}}({\varvec{\alpha }},{\varvec{\beta }},\rho ,\nu )\) distribution, then

$$\begin{aligned} {\mathrm{E}}\left[ T_{k}\right]= & {} \beta _{k}\left( 1+\frac{u_{k1}}{2}\alpha _{k}^2\right) , \quad \sigma _{k}^{11}={\mathrm{Var}}\left[ T_{k}\right] = \beta _{k}^2\alpha _{k}^2\left( u_{k1} +\frac{2u_{k2}-u_{k1}^2}{4}\alpha _{k}^2\right) ,\\ \sigma _{k}^{22}= & {} {\mathrm{Var}}\left[ T_{k}^{-1}\right] = \beta _{k}^{-2}\alpha _{k}^2\left( u_{k1} +\frac{2u_{k2}-u_{k1}^2}{4}\alpha _{k}^2\right) \quad \sigma _{k}^{12}=\sigma _{k}^{22}={\mathrm{Cov}}\left[ T_{k}\right] \\= & {} 1-\left( 1+\frac{u_{k1}}{2}\alpha _{k}^2\right) ^2, \quad k=1,2, \end{aligned}$$

where \(u_{kr}\) is as in (14).

Now, let \(\{(t_{1i},t_{2i}),i=1,\ldots ,n\}\) be a bivariate random sample from the \({\mathrm{GBBS}}({\varvec{\alpha }},{\varvec{\beta }},\rho )\) distribution. The sample arithmetic and harmonic means are defined by

$$\begin{aligned} s_{k}=\frac{1}{n}\sum \limits _{i=1}^n t_{ki} \quad \text{ and } \quad r_{k}^*=r_{ki}^{-1}=\frac{1}{n}\sum \limits _{i=1}^n t_{ki}^{-1}, \quad k=1,2, \end{aligned}$$

and the MMEs are given by

$$\begin{aligned} \tilde{\alpha }_{k}=\left\{ \frac{2}{u_{k1}} \left[ \left( s_{k}r_{k}^*\right) ^\frac{1}{2}-1\right] \right\} ^\frac{1}{2} \quad \text{ and } \quad \tilde{\beta }_{k}=\left( s_{k}/r_{k}^*\right) ^{\frac{1}{2}}, \quad k=1,2. \end{aligned}$$

Consider \(S_{k}=\frac{1}{n}\sum _{i=1}^{n}X_{kj}\) and \(R_{k}^{*}=R_{k}^{-1}=\sum _{i=1}^{n}\frac{1}{X_{ki}} \), with \(k=1,2\), which implies that the vector \((S_{k},R_{k}^{-1})^{\top }\) is bivariate normal distributed, that is,

$$\begin{aligned} \sqrt{n} \left( \begin{array}{c} S_{k}-E\left[ T_{k}\right] \\ R_{k}^*-E\left[ T_{k}^{-1}\right] \end{array} \right) \sim N \left[ \left( \begin{array}{c} 0\\ 0 \end{array} \right) , \left( \begin{array}{cc} {\mathrm{Var}}\left[ T_{k}\right] ,1-{\mathrm{E}}\left[ T_{k}\right] {\mathrm{E}}\left[ T_{k}^{-1}\right] \\ 1-{\mathrm{E}}\left[ T_{k}\right] {\mathrm{E}}\left[ T_{k}^{-1}\right] ,{\mathrm{Var}}\left[ T_{k}\right] \end{array} \right) \right] . \end{aligned}$$

We need to find the asymptotic joint distribution of \((\tilde{\alpha }_{k},\tilde{\beta }_{k})^{\top }\). Note that

$$\begin{aligned} \frac{\partial \tilde{\alpha }_{k}}{\partial s_{k}}= & {} \frac{1}{2u_{k1}}\left\{ \frac{2}{u_{k1}} \left[ \left( s_{k}r_{k}^*\right) ^\frac{1}{2}-1\right] \right\} ^{-\frac{1}{2}} \left( r_{k}^*/s_{k}\right) ^\frac{1}{2},\\ \frac{\partial \tilde{\alpha }_{k}}{\partial r_{k}^*}= & {} \frac{1}{2u_{k1}}\left\{ \frac{2}{u_{k1}} \left[ \left( s_{k}r_{k}^*\right) ^\frac{1}{2}-1\right] \right\} ^{-\frac{1}{2}} \left( s_{k}/r_{k}^*\right) ^\frac{1}{2},\\ \frac{\partial \tilde{\beta }_{k}}{\partial s_{k}}= & {} \frac{1}{2}\left( s_{k}r_{k}^*\right) ^{-\frac{1}{2}},\\ \frac{\partial \tilde{\beta }_{k}}{\partial s_{k}}= & {} -\frac{1}{2}\left( s_{k}/r_{k}^*\right) ^{\frac{1}{2}}(r_{k}^*)^{-1}, \end{aligned}$$

and

$$\begin{aligned} a_{k}=\frac{\partial \tilde{\alpha }_{k}}{\partial s_{k}}\big |_{s_{k}=E\left[ S_{k}\right] , r_{k}^*=E\left[ r_{k}^*\right] }= & {} \frac{1}{2\alpha _{k}\beta u_{k1}},\\ b_{k}=\frac{\partial \tilde{\alpha }_{k}}{\partial r_{k}^*} \big |_{s_{k}=E\left[ S_{k}\right] , r_{k}^*=E\left[ r_{k}^*\right] }= & {} \frac{\beta _{k} }{2\alpha _{k} u_{k1}},\\ c_{k}=\frac{\partial \tilde{\beta }_{k}}{\partial s_{k}}\big |_{s_{k} =E\left[ S_{k}\right] , r_{k}^*=E\left[ r_{k}^*\right] }= & {} \frac{1}{2\left( 1+\frac{u_{k1}}{2}\alpha _{k}^2\right) },\\ d_{k}=\frac{\partial \tilde{\beta }_{k}}{\partial s_{k}}\big |_{s_{k} =E\left[ S_{k}\right] , r_{k}^*=E\left[ r_{k}^*\right] }= & {} -\frac{\beta ^2}{2\left( 1+\frac{u_{k1}}{2}\alpha _{k}^2\right) }. \end{aligned}$$

By using the Taylor series expansion, we readily have

$$\begin{aligned} \sqrt{n}\left( \begin{array}{c} \tilde{\alpha }_{k}-\alpha _{k}\\ \tilde{\beta }_{k}-\beta _{k} \end{array} \right) \sim N \left[ \left( \begin{array}{c} 0\\ 0 \end{array} \right) , {\varvec{\varSigma }}_{k} \right] , \quad k=1,2, \end{aligned}$$

where

$$\begin{aligned} {\varvec{\varSigma }}_{k} = \left( \begin{array}{cc} a_{k} &{} b_{k}\\ c_{k} &{} d_{k}\\ \end{array} \right) \left( \begin{array}{cc} \sigma _{k}^{11} &{} \sigma _{k}^{12}\\ \sigma _{k}^{21} &{} \sigma _{k}^{22}\\ \end{array} \right) \left( \begin{array}{cc} a_{k} &{} c_{k}\\ b_{k} &{} d_{k}\\ \end{array} \right) = \left( \begin{array}{cc} \left( \frac{u_{k2}-u_{k1}^2}{4u_{k1}^2}\right) \alpha _{k}^2 &{} 0\\ 0 &{} \frac{u_{k1}+\frac{u_{k2}}{4}\alpha _{k}^2}{\left( 1+\frac{u_{k1}}{2}\alpha _{k}^2\right) ^2}\alpha _{k}^2\beta _{k}^2\\ \end{array} \right) . \end{aligned}$$

Appendix 2: Asymptotic distribution of \(\widetilde{\alpha }_{k}^{*}\)

Note that

$$\begin{aligned} {\mathrm{E}}\left[ \overline{Y}_{k}\right] =\frac{1}{2{\big (\begin{array}{l}n\\ 2 \end{array}\big )}}\sum _{1\le {i}\ne {j}\le {n}}{\mathrm{E}}\left[ Y_{kij}\right] =\left( 1+ \frac{u_{k1}}{2}\alpha _{k}^2\right) ^2, \quad k=1,2, \end{aligned}$$

and

$$\begin{aligned} {\mathrm{E}}\left[ \,\overline{Y}_{k}^{2}\,\right]= & {} \frac{1}{n^{2}(n-1)^{2}}{\mathrm{E}}\left[ \sum _{1\le {i}\,\ne \,{j}\,\ne \,{h}\,\ne \,{l}\,\le \,{n}}\frac{{T}_{ki}T_{kj}}{T_{kh}T_{kl}} +\sum _{1\,\le \,{i}\,\ne \,{j}\,\ne \,{h}\,\le \,{n}}\frac{T_{ki}^{2}}{T_{kj}T_{kh}}\right. \\&+\sum _{1\,\le \,{i}\,\ne \,{j}\,\ne \,{h}\,\le \,{n}}\frac{T_{kj}T_{kh}}{T_{ki}^{2}}\\&\left. +2\sum _{1\,\le \,{i}\,\ne \,{j}\,\ne \,{h}\,\le \,{n}}\frac{T_{ki}T_{kj}}{T_{ki}T_{kh}} + \sum _{1\,\le \,{i}\,\ne \,{j}\,\le \,{n}}\frac{T_{ki}^{2}}{T_{kj}^{2}}+ \sum _{1\,\le \,{i}\,\ne \,{j}\,\le \,{n}}\frac{T_{ki}T_{kj}}{t_{kj}T_{ki}} \right] \\= & {} \frac{(n-2)(n-3)}{n(n-1)} \left( 1+\frac{u_{k1}}{2}\alpha _{k}^2\right) ^4\\&+ \frac{2(n-2)}{n(n-1)}\left\{ \frac{\alpha _{k}^2}{4}\left( 1+\frac{u_{k1}}{2} \alpha _{k}^2\right) ^2\varTheta _{k} +\left( 1+\frac{u_{k1}}{2}\alpha _{k}^2\right) ^4 \right\} \\&+\frac{2(n-2)}{n(n-1)}\left( 1+\frac{u_{k1}}{2}\alpha _{k}^2\right) ^2\\&+\frac{1}{n(n-1)}\left\{ \frac{\alpha ^{4}}{16}\varTheta _{k}^{2}+\frac{\alpha ^{2}}{2} \varTheta _{k}\left( 1+\frac{u_{k1}}{2}\alpha _{k}^2\right) ^2 +\left( 1+\frac{u_{k1}}{2}\alpha _{k}^2\right) ^4 \right\} \\&+\frac{1}{n(n-1)}, \end{aligned}$$

where \(\varTheta _{k}=4u_{k1}+(2u_{k2}-u_{k1}^{2})\alpha _{k}^{2}\). From these results, we have

$$\begin{aligned} \text {Var}\left[ \overline{Y}_{k}\right]= & {} {\mathrm{E}}\left[ \overline{Y}_{k}^{2}\right] -\left( 1+\frac{u_{k1}}{2}\alpha _{k}^2\right) ^4. \end{aligned}$$

To obtain the distribution of \(\widetilde{\alpha }^{*}_{k}\), we use a Taylor series expansion such that

$$\begin{aligned} \widetilde{\alpha }_{k}^{*}= & {} \left\{ \frac{2}{u_{k1}}\left[ \sqrt{\overline{y}_{k}} -1\right] \right\} ^{\frac{1}{2}} = g\left( \overline{y}_{k}\right) =g(\xi _{k}) +\left( \overline{y}_{k}-\xi _{k}\right) g'(\xi _{k}) \\&+\frac{\left( \overline{y}_{k}-\xi _{k}\right) ^2}{2}g''(\xi )+\cdots , \end{aligned}$$

where \(g'(\cdot )\) and \(g''(\cdot )\) denote the first and second derivatives of the function of \(g(\cdot )\) and \(\xi _{k}=\left( 1+ \frac{u_{k1}}{2}\alpha _{k}^2\right) ^2\). We thus obtain the asymptotic distribution of \(\widetilde{\alpha }_{k}^{*}\) as

$$\begin{aligned} \sqrt{n}\left( \widetilde{\alpha }^{*}_{k}-{\alpha }_{k}\right) \xrightarrow [n\rightarrow \infty ]{}\text {N}\left( 0, {\alpha _{k}^2}\left[ \frac{u_{k2}-u_{k1}^2}{4u_{k1}^2}\right] \right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saulo, H., Balakrishnan, N., Zhu, X. et al. Estimation in generalized bivariate Birnbaum–Saunders models. Metrika 80, 427–453 (2017). https://doi.org/10.1007/s00184-017-0612-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-017-0612-5

Keywords

Navigation