Skip to main content

Advertisement

Log in

Adverse bone effects of medications used to treat non-skeletal disorders

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

There is a growing list of medications used to treat non-skeletal disorders that cause bone loss and/or increase fracture risk. This review discusses glucocorticoids, drugs that reduce sex steroids, antidiabetic agents, acid-reducing drugs, selective serotonin reuptake inhibitors, and heparin. A number of drugs are known to cause bone loss, increase fracture risk, or both. These drugs should be used in the lowest dose necessary to achieve the desired benefit and for the shortest time necessary, but in many cases, long-term treatment is required. Effective countermeasures are available for some.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saag KG, Emkey R, Schnitzer TJ et al (1998) Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. N Engl J Med 339:292–299

    Article  CAS  PubMed  Google Scholar 

  2. Cohen S, Levy RM, Keller M et al (1999) Risedronate therapy prevents corticosteroid-induced bone loss—a twelve-month, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Arthritis Rheum 42:2309–2318

    Article  CAS  PubMed  Google Scholar 

  3. Reid DM, Hughes R, Laan RFJM et al (2000) Efficacy and safety of daily risedronate in the treatment of corticosteroid-induced osteoporosis in men and women: a randomized trial. J Bone Miner Res 15:1006–1013

    Article  CAS  PubMed  Google Scholar 

  4. Reid DM, Devogelaer J-PJP, Saag K et al (2009) Zoledronic acid and risedronate in the prevention and treatment of glucocorticoid-induced osteoporosis (HORIZON): a multicentre, double-blind, double-dummy randomised controlled trial. Lancet 373:1253–1263. doi:10.1016/S0140-6736(09)60250-6

    Article  CAS  PubMed  Google Scholar 

  5. Saag KG, Shane E, Boonen S et al (2007) Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N Engl J Med 357:2028–2039

    Article  CAS  PubMed  Google Scholar 

  6. Compston J (2010) Management of glucocorticoid-induced osteoporosis. Nat Rev Rheumatol 6:82–88

    Article  CAS  PubMed  Google Scholar 

  7. Weinstein RS (2011) Glucocorticoid-induced bone disease. N Engl J Med 365:62–70

    Article  CAS  PubMed  Google Scholar 

  8. Seibel MJ, Cooper MS, Zhou H (2013) Glucocorticoid-induced osteoporosis: mechanisms, management, and future perspectives. Lancet Diabetes Endocrinol 1:59–70

    Article  CAS  PubMed  Google Scholar 

  9. Frenkel B, White W, Tuckermann J (2015) Glucocorticoid-induced osteoporosis. Adv Exp Med Biol 872:179–215

    Article  CAS  PubMed  Google Scholar 

  10. Whittier X, Saag KG (2016) Glucocorticoid-induced osteoporosis. Rheum Dis Clin N Am 42:177–189

    Article  Google Scholar 

  11. Grossman JM, Gordon R, Ranganath VK et al (2010) American College of Rheumatology 2010 recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Care Res 62:1515–1526

    Article  Google Scholar 

  12. Buckley L, Guyatt G, Fink HA et al (2017) 2017 American College of Rheumatology Guideline for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Rheumatol 69. doi:10.1002/art.40137

  13. Rejnmark L, Vestergaard P, Heickendorff L et al (2006) Loop diuretics increase bone turnover and decrease BMD in osteopenic postmenopausal women: results from a randomized controlled study with bumetanide. J Bone Min Res 21:163–170

    Article  CAS  Google Scholar 

  14. Rejnmark L, Vestergaard P, Mosekilde L (2006) Fracture risk in patients treated with loop diuretics. J Intern Med 259:117–124

    Article  CAS  PubMed  Google Scholar 

  15. Carbone LD, Johnson KC, Bush AJ et al (2009) Loop diuretic use and fracture in postmenopausal women: findings from the Women’s Health Initiative. Arch Intern Med 169:132–140

    Article  PubMed  Google Scholar 

  16. Verbalis JG, Barsony J, Sugimura Y et al (2010) Hyponatremia-induced osteoporosis. J Bone Miner Res 25:554–563. doi:10.1359/jbmr.090827

    Article  CAS  PubMed  Google Scholar 

  17. Ayus JC, Bellido T, Negri AL (2017) Hyponatremia and fractures: should hyponatremia be further studied as a potential biochemical risk factor to be included in FRAX algorithms? Osteoporos Int:1543–1548. doi:10.1007/s00198-017-3907-5

  18. Ott SM, LaCroix AZ, Scholes D et al (2008) Effects of three years of low-dose thiazides on mineral metabolism in healthy elderly persons. Osteoporos Int 19:1315–1322

    Article  CAS  PubMed  Google Scholar 

  19. LaCroix AZ, Weinpahl J, White LR et al (1990) Thiazide diuretic agents and the incidence of hip fracture. N Engl J Med 322:286–290

    Article  CAS  PubMed  Google Scholar 

  20. Paik JM, Rosen Uharold N, Gordon CM, Curhan GC (2016) Diuretic use and risk of vertebral fracture in women. Am J Med 129:1299–1306

    Article  CAS  PubMed  Google Scholar 

  21. Kaunitz AM, Miller PD, Rice VM et al (2006) Bone mineral density in women aged 25–35 years receiving depot medroxyprogesterone acetate: recovery following discontinuation. Contraception 74:90–99

    Article  CAS  PubMed  Google Scholar 

  22. Kaunitz AM, Arias R, McClung M (2008) Bone density recovery after depot medroxyprogesterone acetate injectable contraception use. Contraception 77:67–76

    Article  CAS  PubMed  Google Scholar 

  23. Cundy T, Cornish J, Roberts H, Reid IR (2002) Menopausal bone loss in long-term users of depot medroxyprogesterone acetate contraception. Am J Obstet Gynecol 186:978–983

    Article  CAS  PubMed  Google Scholar 

  24. Kyvernitakis I, Kostev K, Nassour T et al (2016) The impact of depot medroxyprogesterone acetate on fracture risk: a case-control study from the UK. Osteoporos Int 27:1–7

    Google Scholar 

  25. Furr BJA, Woodburn JR (1988) Luteinizing hormone-releasing hormone and its analogues: a review of biological properties and clinical uses. J Endocrinol Investig 11:535–557

    Article  CAS  Google Scholar 

  26. Gonadotropin-releasing hormone agonist. https://en.wikipedia.org/wiki/Gonadotropin-releasing_hormone_agonist https://en.wikipedia.org/wiki/Gonadotropin-releasi

  27. Gonadotropin-releasing hormone antagonist. https://en.wikipedia.org/wiki/Gonadotropin-releasing_hormone_antagonist https://en.wikipedia.org/wiki/Gonadotropin-releasi

  28. Ezzati M, Carr BR (2015) Elagolix, a novel, orally bioavailable GnRH antagonist under investigation for the treatment of endometriosis-related pain. Women's Health (Lond Engl) 11:19–28

    Article  CAS  Google Scholar 

  29. Melis GB, Neri M, Corda V et al (2016) Overview of elagolix for the treatment of endometriosis. Expert Opin Drug Metab Toxicol 12:581–588

    Article  CAS  PubMed  Google Scholar 

  30. Casper RF (2015) Basic understanding of gonadotropin-releasing hormone-agonist triggering. Fertil Steril 103:867–869

    Article  CAS  PubMed  Google Scholar 

  31. Youssef MAFM, Van der Veen F, Al-Inany HG et al (2016) The updated Cochrane Review 2014 on GnRH agonist trigger: an indispensable piece of information for the clinician. Reprod BioMed Online 32:259–260

    Article  PubMed  Google Scholar 

  32. Park HK, Lee HS, Ko JH et al (2012) The effect of gonadotrophin-releasing hormone agonist treatment over 3 years on bone mineral density and body composition in girls with central precocious puberty. Clin Endocrinol 77:743–748

    Article  CAS  Google Scholar 

  33. Alessandri SB, Pereira Fde A, Villela RA et al (2012) Bone mineral density and body composition in girls with idiopathic central precocious puberty before and after treatment with a gonadotropin-releasing hormone agonist. Clinics (Sao Paulo) 67:591–596

    Article  Google Scholar 

  34. Tafi E, Leone Roberti Maggiore U, Alessandri F et al (2015) Advances in pharmacotherapy for treating endometriosis. Expert Opin Pharmacother 16:2465–2483

    Article  CAS  PubMed  Google Scholar 

  35. Berlanda N, Somigliana E, Vigano P, Vercellini P (2016) Safety of medical treatments for endometriosis. Expert Opin Drug Saf 15:21–30

    Article  CAS  PubMed  Google Scholar 

  36. Chabbert-Buffet N, Esber N, Bouchard P (2014) Fibroid growth and medical options for treatment. Fertil Steril 102:630–639

    Article  PubMed  Google Scholar 

  37. Pontis A, D’Alterio MN, Pirarba S et al (2016) Adenomyosis: a systematic review of medical treatment. Gynecol Endocrinol 32:696–700

    Article  CAS  PubMed  Google Scholar 

  38. Tsai H-W, Wang P-H, Huang B-S et al (2016) Low-dose add-back therapy during postoperative GnRH agonist treatment. Taiwan J Obstet Gynecol 55:55–59

    Article  PubMed  Google Scholar 

  39. Taylor HS, Giudice LC, Lessey BA et al (2017) Treatment of endometriosis-associated pain with elagolix, and oral GnRH inhibitor. N Engl J Med 377:28–40

  40. Greenspan SL, Coates P, Sereika SM et al (2005) Bone loss after initiation of androgen deprivation therapy in patients with prostate cancer. J Clin Endocrinol Metab 90:6410–6417

    Article  CAS  PubMed  Google Scholar 

  41. Morgans AK, Fan KH, Koyama T et al (2014) Bone complications among prostate cancer survivors: long-term follow-up from the prostate cancer outcomes study. Prostate Cancer Prostatic Dis 17:338–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang A, Obertova Z, Brown C et al (2015) Risk of fracture in men with prostate cancer on androgen deprivation therapy: a population-based study in New Zealand. BMJ Cancer 15:837

    Article  Google Scholar 

  43. Garg A, Leitzel K, Ali S, Lipton A (2015) Antiresorptive therapy in the management of cancer treatment-induced bone loss. Curr Osteoporos Rep 13:73–77

    Article  PubMed  Google Scholar 

  44. Smith MR, Morton RA, Barnette KG et al (2010) Toremifene to reduce fracture risk in men receiving androgen deprivation therapy for prostate cancer. J Urol 184:1316–1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Smith MR, Egerdie B, Hernandiz-Toriz N et al (2009) Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Engl J Med 361:1745–1755

    Google Scholar 

  46. Damji AN, Bies K, Alibhai SMH, Jones JM (2015) Bone health management in men undergoing ADT: examining enablers and barriers to care. Osteoporos Int 26:951–959

    Article  CAS  PubMed  Google Scholar 

  47. McCloskey E (2006) Effects of third-generation aromatase inhibitors on bone. Eur J Cancer 42:1044–1051

    Article  CAS  PubMed  Google Scholar 

  48. Chebowski RT, Haque R, Hedlin H et al (2015) Benefit/risk for adjuvant breast cancer therapy with tamoxifen or aromatase inhibitor use by age and race/ethnicity. Breast Cancer Res Treat 154:609–616

    Article  Google Scholar 

  49. Bouvard B, Soulie P, Hoppe E et al (2014) Fracture incidence after 3 years of aromatase inhibitor therapy. Ann Oncol 25:843–847

    Article  CAS  PubMed  Google Scholar 

  50. Majithia N, Atherton PJ, Lafky JM et al (2016) Zoledronic acid for treatment of osteopenia and osteoporosis in women with primary breast cancer undergoing adjuvant aromatase inhibitor therapy: a 5-year follow-up. Support Care Cancer 24:1219–1226

    Article  PubMed  Google Scholar 

  51. Greenspan SL, Vujevich KT, Brufsky A et al (2015) Prevention of bone loss with risedronate in breast cancer survisors: a randomized, controlled clinical trial. Osteoporos Int 26:1857–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ellis GK, Bone HG, Chebowski R et al (2009) Effect of denosumab on bone mineral density in women receiving adjuvant aromatase inhibitors for non-metastatic breast cancer: subgroup analysis of a Phase 3 study. Breast Cancer Res Treat 118:81–87

    Article  CAS  PubMed  Google Scholar 

  53. Gnant M, Pfeiler G, Dubsky PC et al (2015) Adjuvant denosumab in breast cancer (ABSCG-18): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 386:433–443

    Article  CAS  PubMed  Google Scholar 

  54. Hadji P, Aapro MS, Body J-J et al (2017) Management of aromatase inhibitor-associated bone loss (AIBL) in postmenopausal women with hormone sensitive breast cancer: joint position statement of the IOF, CABS, ECTS, IEG, ESCEO, IMS, and SIOG. J Bone Oncol 7:1–12

    Article  PubMed  PubMed Central  Google Scholar 

  55. Coleman R, Body J-J, Aapro M et al (2014) Bone health in cancer patients: ESMO Clinical Practice Guidelines. Ann Oncol 25(Suppl 3):124–137

    Article  Google Scholar 

  56. Fan Y, Wei F, Lang Y, Liu Y (2016) Diabetes mellitus and risk of hip fractures: a meta-analysis. Osteoporos Int 27:219–228. doi:10.1007/s00198-015-3279-7

    Article  CAS  PubMed  Google Scholar 

  57. Janghorbani M, Van Dam RM, Willett WC, Hu FB (2007) Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol 166:495–505

    Article  PubMed  Google Scholar 

  58. Ali AA, Weinstein RA, Scott SA et al (2005) Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology 2005:1226–1235

    Article  Google Scholar 

  59. Lecka-Czernik B, Acker-Bicknell C, Adamo ML et al (2007) Activation of peroxisome proliferator-activated receptor gamma (PPAR gamma) by rosiglitzaone suppresses components of the insulin-like growth factor regulatory system in vitro and in vivo. Endocrinology 148:903–911

    Article  CAS  PubMed  Google Scholar 

  60. Grey A, Bolland M, Gamble G et al (2007) The peroxisome-proliferator-activated receptor gamma agonist rosiglitazone decreased bone formation and bone mineral density in healthy postmenopausal women: a randomized controlled trial. J Clin Endocrinol Metab 92:1305–1310

    Article  CAS  PubMed  Google Scholar 

  61. Bilezikian JP, Watts NB, Usiskin K et al (2016) Evaluation of bone mineral density and bone biomarkers in patients with type 2 diabetes treated with canagliflozin. J Clin Endocrinol Metab 101:44–51

    Article  CAS  PubMed  Google Scholar 

  62. Watts NB, Bilezikian JP, Usiskin K et al (2016) Effects of canagliflozin on fracture risk in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 101:157–166

    Article  CAS  PubMed  Google Scholar 

  63. Dombrowski S, Kostev K, Jacob L (2017) Use of dipeptidyl peptidase-4 inhibitors and risk of bone fracture in patients with type 2 diabetes in Germany—a retrospective analysis of real-world data. Osteoporos Int. doi:10.1007/s00198-017-4051-y

  64. Grisso JA, Kelsey JL, O’Brien LA et al (1997) Risk factors for hip fracture in men. Am J Epidemiol 145:786–793

    Article  CAS  PubMed  Google Scholar 

  65. Vestergaard P, Rejnmark L, Mosekilde L (2006) Proton pump inhibitors, histamine H2 receptor antagonists and other antacid medications and the risk of fracture. Calcif Tissue Res 79:76–83

    Article  CAS  Google Scholar 

  66. van der Hoorn MM, Tett SE, de Vries OJ, Peeters GM (2015) The effect of dose and type of proton pump inhibitor use on the risk of fractures and osteoporosis treatment in Australian women: a prospective cohort study. Bone 81:675–682

    Article  PubMed  Google Scholar 

  67. Zhou B, Huang Y, Li H et al (2016) Proton-pump inhibitors and risk of fractures: an update meta-analysis. Osteoporos Int 27:339–347. doi:10.1007/s00198-015-3365-x

    Article  CAS  PubMed  Google Scholar 

  68. O’Connell MB, Madden DM, Murray AM et al (2005) Effects of proton pump inhibitors on calcium carbonate absorption in women: a randomized crossover drial. Am J Med 120:778–781

    Article  Google Scholar 

  69. Solomon DH, Diem SJ, Ruppert K et al (2015) Bone mineral density changes among women initiating proton pump inhibitors or H2 receptor antagonists: a SWAN cohort study. J Bone Miner Res 30:232–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lewis JR, Barre D, Zhu K et al (2014) Long-term proton pump inhibitor therapy and falls and fractures in elderly women: a prospective cohort study. J Bone Miner Res 39:2489–2497

    Article  Google Scholar 

  71. Thaler HW, Sterke CS, van der Cammen TJ (2016) Association of proton pump inhibitor use with recurrent falls and risk of fractures in older women: a study of medication use in older fallers. J Nutr 20:77–81

    CAS  Google Scholar 

  72. Pouwels S, Lalmohamed A, Souverein P et al (2011) Use of proton pump inhibitors and risk of hip/femur fracture: a population-based case-control study. Osteoporos Int 22:903–910

    Article  CAS  PubMed  Google Scholar 

  73. Brozek W (2017) Use of proton pump inhibitors and mortality after hip fracture in a nationwide study. Osteoporos Int 28:1587–1595

    Article  CAS  PubMed  Google Scholar 

  74. Lee RH, Lyles KW, Colon-Emeric CS (2010) A review of the effect of anticonvulsant medications on bone mineral density and fracture risk. Am J Geriatr Pharmacother 8:34–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Beerhorst K, van der Kruijs SJ, Verschuure P et al (2015) Bone disease during chronic antiepileptic drug therapy: general versus specific risk factors. J Neurol Sci 331:19–25

    Article  Google Scholar 

  76. Crawford P (2005) Best practice guidelines for the management of women with epilepsy. Epilepsia 46:117–124

    Article  PubMed  Google Scholar 

  77. Elliott JO (2009) Possible methods for the prevention of bone loss in persons with epilepsy. Expert Rev Neurother 9:797–812

    Article  PubMed  Google Scholar 

  78. Lateigne A, Sheu YH, Sturmer T et al (2015) Serotonin-norepinephrine reuptake inhibitor and selective serotonin reuptake inhibitor use and risk of fractures: a new-user cohort study among US adults aged 50 years and older. CNS Drugs 29:245–252

    Article  Google Scholar 

  79. Sheu YH, Lateigne A, Sturmer T et al (2015) SSRI use and risk of fractures among postmenopausal women without mental disorders. Inj Prev 21:397–403

    Article  PubMed  Google Scholar 

  80. Diem SJ, Blackwell TL, Stone KL et al (2007) Use of antidepressants and rates of hip bone loss in older women: the study of osteoporotic fractures. Arch Intern Med 167:1240–1245

    Article  PubMed  Google Scholar 

  81. Feuer AJ, Demmer RT, Thai A, Vogiatzi MG (2015) Use of selective serotonin reuptake inhibitors and bone mass in adolescents: an NHANES study. Bone 78:28–33

    Article  CAS  PubMed  Google Scholar 

  82. Haney EM, Chan BK, Diem SJ et al (2007) Association of low bone mineral density with selective serotonin reuptake inhibitors in older men. Arch Intern Med 167:1251–1256

    Article  Google Scholar 

  83. Warden SJ, Robling AG, Haney EM et al (2010) The emerging role of serotonin (5-hydroxytryptamine) in the skeleton and its mediation of the skeletal effects of low-density lipoprotein receptor-related protein 5 (LRP5). Bone 46:4–12

    Article  CAS  PubMed  Google Scholar 

  84. Lee S-H, Hsu W-T, Lai C-C et al (2017) Use of antipsychotics increased the risk of fracture: a systematic review and meta-analysis. Osteoporos Int 28:1167–1178

    Article  CAS  PubMed  Google Scholar 

  85. deSweit M, Ward P, Fidler A et al (1983) Prolonged heparin therapy in pregnancy causes bone demineralisation. Br J Obstet Gynaecol 90:1129–1134

    Article  Google Scholar 

  86. Dalhman T (1993) Osteoporotic fractures and the recurrence of thromboembolism during pregnancy and the puerperium in 184 women undergoing thromboprophylaxis with heparin. Am J Obstet Gynecol 168:1265–1270

    Article  Google Scholar 

  87. Barbour LA, Kick S, Steiner J et al (1994) A prospective study of heparing-induced osteoporosis in pregnancy using bone densitometry. Am J Obstet Gynecol 170:862–869

    Article  CAS  PubMed  Google Scholar 

  88. Ozdemir D, Tam AA, Dirikoc A et al (2015) Postpartum osteoporosis and vertebral fractures in two patients treated with enoxaparin during pregnancy. Osteoporos Int 26:415–418

    Article  CAS  PubMed  Google Scholar 

  89. Veronese N, Bano G, Bertozzo G et al (2015) Vitamin K antagonists use and fracture risk: results from a systemic review and meta-analysis. J Thromb Haemost 13:1665–1675

    Article  CAS  PubMed  Google Scholar 

  90. Lau WC, Chan EW, Cheung CL et al (2017) Association between dabigatran vs warfarin and risk of osteoporotic fractures among patients with nonvalvular atrial fibrillation. JAMA 317:1151–1158

    Article  CAS  PubMed  Google Scholar 

  91. Steffel J, Giugliano RP, Braunwald E et al (2016) Edoxaban versus warfarin in atrial fibrillation patients at risk of falling: ENGAGE AF-TIMI 48 analysis. J Am Coll Cardiol 68:1169–1178

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Watts.

Ethics declarations

Conflict of interest

Stock options/holdings, royalties, company owner, patent owner, official role: OsteoDynamics, co-founder, stockholder. Honoraria for lectures the past year: Amgen, Merck, Shire. Consulting fees received in the past year: AbbVie, Amgen, Janssen, Merck, Radius, Sanofi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watts, N.B. Adverse bone effects of medications used to treat non-skeletal disorders. Osteoporos Int 28, 2741–2746 (2017). https://doi.org/10.1007/s00198-017-4171-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-017-4171-4

Keywords

Navigation