Skip to main content
Log in

Absence of quasi-morphine withdrawal syndrome in adenosine A2A receptor knockout mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Caffeine and other methylxanthines induce behavioral activation and anxiety responses in mice via antagonist action at A2A adenosine receptors. When combined with the opioid antagonist naloxone, methylxanthines produce a characteristic quasi-morphine withdrawal syndrome (QMWS) in opiate-naive animals.

Objectives

The aim of this study was to establish the role of A2A receptors in the quasi-morphine withdrawal syndrome induced by co-administration of caffeine and naloxone and in the behavioral effects of caffeine.

Methods

We have used A2A receptor knockout (A2AR−/−) mice in comparison with their wild-type and heterozygous littermates to measure locomotor activity in the open field and withdrawal symptoms induced by caffeine and naloxone. Naïve wild-type and knockout mice were also examined for enkephalin and dynorphin mRNA expression by in situ hybridization and for μ-opiate receptor by ligand binding autoradiography to check for possible opiate receptor changes induced by A2A receptor inactivation.

Results

Caffeine increases locomotion and anxiety in wild-type animals, but it has no psychomotor effects in A2AR−/− mice. Co-administration of caffeine (20 mg/kg) and naloxone (2 mg/kg) resulted in a severe quasi-morphine withdrawal syndrome in wild-type mice that was almost completely abolished in A2AR−/− mice. Heterozygous animals exhibited a 40% reduction in withdrawal symptoms, suggesting that there is no genetic/developmental compensation for the inactivation of one of the A2AR alleles. A2AR−/− and wild-type mice have similar levels of striatal μ-opioid receptors, thus the effect is not due to altered opioid receptor expression.

Conclusions

Our results demonstrate that A2A receptors are required for the induction of quasi-morphine withdrawal syndrome by co-administration of caffeine and naloxone and implicate striatal A2A receptors and μ-opiate receptors in tonic inhibition of motor activity in the striatum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bailey A, Ledent C, Kelly M, Hourani MO, Kitchen I (2002) Changes in spinal delta and kappa opiod systems in mice deficient in the A2A receptor gene. J Neurosci 22:9210–9220

    PubMed  CAS  Google Scholar 

  • Bailey A, Davis L, Lesscher HM, Kelly MD, Ledent C, Hourani SM, Kitchen I (2004) Enhanced morphine withdrawal and micro-opioid receptor G-protein coupling in A2A adenosine receptor knockout mice. J Neurochem 88:827–834

    Article  PubMed  CAS  Google Scholar 

  • Berrendero F, Castane A, Ledent C, Parmentier M, Maldonado R, Valverde O (2003) Increase of morphine withdrawal in mice lacking A2A receptors and no changes in CB1/A2a double knockout mice. Eur J Neurosci 17:315–324

    Article  PubMed  Google Scholar 

  • Butt NM, Collier HOJ, Cuthbert NJ, Francis DL, Saeed SA (1979) Mechanism of quasi-morphine withdrawal behavior induced by methylxanthines. Eur J Pharmacol 53:375–378

    Article  PubMed  CAS  Google Scholar 

  • Capasso A (2000) Adenosine receptors are involved in the control of acute naloxone-precipitated withdrawal: in vitro evidence. Life Sci 66:873–883

    Article  PubMed  CAS  Google Scholar 

  • Chen JF, Huang Z, Ma J, Zhu J, Moratalla R, Standaert D, Moskowitz MA, Fink JS, Schwarzschild MA (1999) A2A adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice. J Neurosci 19:9192–9200

    PubMed  CAS  Google Scholar 

  • Chen J-F, Beilstein M, Xu Y-H, Turner J, Moratalla R, Standaert DG, Aloyo VJ, Fink JS, Schwarzschild MA (2000) Selective attenuation of psychostimulant-induced behavioral responses in mice lacking A2A adenosine receptors. Neuroscience 97:195–204

    Article  PubMed  CAS  Google Scholar 

  • Chen J-F, Moratalla R, Impagnatiello F, Grandy DK, Cuellar B, Rubinstein M, Beilstein M, Hackett E, Fink JS, Low MJ, Ongini E, Schwarzschild MA (2001) The role of D2 dopamine receptor (D2R) in A2A adenosine receptor (A2AR)-mediated behavioral and cellular responses as revealed by A2A and D2 receptor knockout mice. Proc Natl Acad Sci U S A 98:1970–1975

    Article  PubMed  CAS  Google Scholar 

  • Chen J-F, Moratalla R, Yu L, Martín AB, Hackett E, Alberti I, Schwarzschild MA (2003) Inactivation of adenosine A2A receptors selectively attenuates amphetamine-induced behavioral sensitization. Neuropsychopharmacology 28:1086–1095

    PubMed  CAS  Google Scholar 

  • Collier HO, Francis DL, Henderson G, Schneider C (1974) Quasi-morphine abstinence syndrome. Nature 249:471–473

    Article  PubMed  CAS  Google Scholar 

  • Collier HO, Curthbert NJ, Francis DI (1981) Character and meaning of quasi-morphine withdrawal phenomena elicited by methylxanthines. Fed Proc 40:1513–1518

    PubMed  CAS  Google Scholar 

  • Cowan A (1981) Quasi-morphine withdrawal syndrome: recent developments. Fed Proc 40:1489–1490

    PubMed  CAS  Google Scholar 

  • Daly JW, Fredholm BB (1998) Caffeine: an atypical drug of dependence. Drug Alcohol Depend 51:199–206

    Article  PubMed  CAS  Google Scholar 

  • Dassesse D, Massie A, Ferrari R, Ledent C, Parmentier M, Arckens L, Zoli M, Schiffmann SN (2001) Functional striatal hypodopaminergic activity in mice lacking adenosine A2A receptors. J Neurochem 78:183–198

    Article  PubMed  CAS  Google Scholar 

  • Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55

    Article  PubMed  CAS  Google Scholar 

  • Fernández-González R, Moreira P, Bilbao A, Jimenez A, Pérez-Crespo M, Ramirez MA, Rodriguez De Fonseca F, Pintado B, Gutierrez-Adan A (2004) Long-term effect of in vitro culture of mouse embryos with serum on mRNA expression of imprinting genes, development, and behavior. Proc Natl Acad Sci U S A 101:5880–5885

    Article  PubMed  CAS  Google Scholar 

  • Ferré S, Fredholm BB, Morelli M, Popoli P, Fuxe K (1997) Adenosine-dopamine receptor–receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci 20:482–487

    Article  PubMed  Google Scholar 

  • Fredduzzi S, Moratalla R, Monopoli A, Cuellar B, Xu K, Ongini E, Impagnatiello F, Schwarzschild MA, Chen J-F (2002) Persistent behavioral sensitization to chronic l-dopa requires A2A adenosine receptors. J Neurosci 22:1054–1062

    PubMed  CAS  Google Scholar 

  • Fredholm B, Ijzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International union of pharmacology: XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552

    PubMed  CAS  Google Scholar 

  • Grande C, Zhu H, Martin AB, Lee M, Ortiz O, Hiroi N, Moratalla R (2004). Chronic treatment with atypical neuroleptics induces striosomal FosB/DeltaFosB expression in rats. Biol Psychiatry 55:457–463

    Article  PubMed  CAS  Google Scholar 

  • Grant SJ, Redmond DE (1982) Clonidine suppresses methylxanthine induced quasi-morphine withdrawal syndrome. Pharmacol Biochem Behav 17:655–658

    Article  PubMed  CAS  Google Scholar 

  • Haas HL, Selbach O (2000) Functions of neuronal adenosine receptors Naunyn-Schmiedebergs Arch Pharmakol 362:375–381

    Article  CAS  Google Scholar 

  • Halimi G, Devaux C, Clot-Faybesse O, Sampol J, Legof L, Rochat H, Guieu R (2000) Modulation of adenosine concentration by opiod receptor agonists in rat striatum. Eur J Pharmacol 398:217–224

    Article  PubMed  CAS  Google Scholar 

  • Halldner L, Aden U, Dahlberg V, Johansson B, Ledent C, Fredholm BB (2004) The adenosine A1 receptor contributes to the stimulatory, but not the inhibitory effect of caffeine on locomotion: a study in mice lacking adenosine A1 and/or A2A receptors. Neuropharmacology 46:1008–1017

    Article  PubMed  CAS  Google Scholar 

  • Hauber W (1998) Involvement of basal ganglia transmitter systems in movement initiation. Prog Neurobiol 56:507–540

    Article  PubMed  CAS  Google Scholar 

  • Johansson B, Georgiev V, Fredholm BB (1997) Distribution and postnatal ontogeny of adenosine A2A receptors in rat brain: comparison with dopamine receptors. Neuroscience 80:1187–1207

    Article  PubMed  CAS  Google Scholar 

  • Julián MD, Martín AB, Cuéllar B, Rodríguez De Fonseca F, Navarro M, Moratalla R, García-Segura LM (2003) Neuroanatomical relationship between type 1 cannabinoid receptors and dopaminergic systems in the rat basal ganglia. Neuroscience 119:309–318

    Article  PubMed  CAS  Google Scholar 

  • Kaplan GB, Sears MT (1996) Adenosine receptor agonist attenuate and adenosine receptor antagonist exacerbate opiate withdrawal signs. Psychopharmacology 123:64–70

    Article  PubMed  CAS  Google Scholar 

  • Kaplan GB, Coyle TS (1998) Adenosine kinase inhibitors attenuate opiate withdrawal via adenosine receptor activation. Eur J Pharmacol 362:1–8

    Article  PubMed  CAS  Google Scholar 

  • Kaplan GB, Leite-Morris KA, Sears MT (1994) Alterations of adenosine A1 receptors in morphine dependence. Brain Res 657:347–350

    Article  PubMed  CAS  Google Scholar 

  • Kase H (2001) New aspects of physiological and pathophysiological functions of adenosine A2A receptor in basal ganglia. Biosci Biotechnol Biochem 65:1447–1457

    Article  PubMed  CAS  Google Scholar 

  • Kleven MS, Sheldom BS (1989) Modification of quasi-morphine withdrawal with serotonin agonists and antagonists: evidence for a role of serotonin in the expression of opiate withdrawal. Psychopharmacology 98:231–235

    Article  PubMed  CAS  Google Scholar 

  • Ledent C, Vaugeois JM, Schiffmann SN, Pedrazzini T, El Yacoubi M, Vanderhaeghen JJ, Costentin J, Heath JK, Vassart G, Parmentier M (1997) Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2A receptor. Nature 388:674–678

    Article  PubMed  CAS  Google Scholar 

  • Moratalla R, Robertson HA, Graybiel AM (1992) Dynamic regulation of NGFI-A (zif268, egr1) gene expression in the striatum. J Neurosci 12:2609–2622

    PubMed  CAS  Google Scholar 

  • Moratalla R, Vickers EA, Robertson HA, Cochran BH, Graybiel AM (1993) Coordinate expression of c-fos and jun B is induced in the rat striatum by cocaine. J Neurosci 13:423–433

    PubMed  CAS  Google Scholar 

  • Moratalla R, Xu M, Tonegawa S, Graybiel AM (1996) Cellular responses to psychomotor stimulant and neuroleptic drugs are abnormal in mice lacking the D1 dopamine receptor. Proc Natl Acad Sci U S A 10:14928–14933

    Article  Google Scholar 

  • Moreau JL, Huber G (1999) Central adenosine A2A receptors: an overview. Brains Res Rev 31:65–82

    Article  CAS  Google Scholar 

  • Navarro M, Lizasoain I, Leza JC, Lorenzo P (1991) An original method for assessment of the jumping test. Methods Find Exp Clin Pharmacol 13:443–447

    PubMed  CAS  Google Scholar 

  • Neal BS, Sparber SB (1990) The serotonin antagonist ritanserin blocks quasi-morphine withdrawal at a time when mianserin is no longer effective. Psychopharmacology 100:258–266

    Article  PubMed  CAS  Google Scholar 

  • Pavón N, Martín AB, Mendialdua A, Moratalla R (2005) ERK phosphorylation and FosB expression are associated to l-DOPA-induced dyskinesia in hemiparkinsonian mice. Biol Psychiatry (in press)

  • Paxinos G, Franklin KBJ (2004) The mouse brain stereotaxic coordinates 2nd edn. Elsevier, San Diego, California, USA

    Google Scholar 

  • Pioli E, Sohr R, Meissner W, Barthe N, Gross CE, Bezard E, Bioulac BH (2004) Partial bilateral mesencephalic lesions affect D1 but not D2 binding in both the striatum and cortex. Neurochem Int 45:995–1004

    Article  PubMed  CAS  Google Scholar 

  • Rebola N, Canas PM, Oliveira CR, Cunha RA (2005) Different synaptic and subsynaptic localization of adenosine A(2A) receptors in the hippocampus and striatum of the rat. Neuroscience 132:893–903

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro JA, Sebastiao AM, MendonÇa A (2003) Adenosine receptors in the nervous system: pathophysiological implications. Prog Neurobiol 68:377–392

    Article  Google Scholar 

  • Rivera A, Cuéllar B, Girón FJ, Grandy DK, de la Calle A, Moratalla R (2002) Dopamine D4 receptors are heterogeneously distributed in the striosomes/matrix compartments of the striatum. J Neurochem 80:219–229

    Article  PubMed  CAS  Google Scholar 

  • Salem A, Hope W (1997) Effect of adenosine receptor agonist and antagonist on the expression of opiate withdrawal in rats. Pharmacol Biochem Behav 57:671–679

    Article  PubMed  CAS  Google Scholar 

  • Solinas M, Ferré S, You ZB, Karcz-Kubicha, Popoli P, Goldberg SR (2002) Caffeine induces dopamine and glutamate release in the shell of the nucleus accumbens. J Neurosci 22:6321–6324

    PubMed  CAS  Google Scholar 

  • Soria G, Castañe A, Berrendero F, Ledent C, Parmentier M, Maldonado R, Valverde O (2004) Adenosine A receptors are involved in physical dependence and place conditioning induced by THC. Eur J Neurosci 20:2203–2213

    Article  PubMed  Google Scholar 

  • Yano M, Steiner H (2005) Methylphenidate (Ritalin) induces homer 1a and Zif 268 expression in specific corticostriatal circuits. Neuroscience 132:855–865

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by Plan Nacional Sobre Drogas and FIS (Red RTA, G03/05, and Red CIEN, C03/06) to R.M; M.N. and F.R.F and by the Spanish Ministerio de Educación y Ciencia, SAF2003-4864 and GEN2003-20651-C06-02 to RM and to F.R.F. The authors acknowledge the technical assistance of Luis Franco, Ana Isabel Tena, Coco Castuera and Oskar Ortiz. R. Moratalla, M. Navarro, and F. Rodríguez de Fonseca contributed equally for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Moratalla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilbao, A., Cippitelli, A., Martín, A.B. et al. Absence of quasi-morphine withdrawal syndrome in adenosine A2A receptor knockout mice. Psychopharmacology 185, 160–168 (2006). https://doi.org/10.1007/s00213-005-0284-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0284-0

Keywords

Navigation