Skip to main content
Log in

Cocaine-induced sensitization is associated with altered dynamics of transcriptional responses of the dopamine transporter, tyrosine hydroxylase, and dopamine D2 receptors in C57Bl/6J mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Behavioural sensitization is a long lasting phenomenon that has been proposed to be involved in drug addiction. Although the expression of cocaine-induced sensitization has been associated with the activity of the mesencephalic dopaminergic neurons, little is known about the transcriptional adaptations of these neurons to a new challenge with cocaine long after cessation of repeated exposure to the drug.

Objectives

We studied the time course of the mRNA levels of three main regulatory elements of dopaminergic transmission after a challenge with cocaine (15 mg/kg) that followed 21 days of withdrawal from a cocaine pretreatment (20 mg/kg, ip, every 2 days for 21 days) in C57Bl/6J mice.

Materials and methods

Mice were placed 45 min in activity chambers and were killed 45 min, 2 h or 24 h after the challenge injection. Dopamine transporter (DAT), D2 auto-receptor (D2) and tyrosine hydroxylase (TH) mRNA levels were assessed by in situ hybridization in the ventral tegmental area and the substantia nigra compacta.

Results

As compared to vehicle challenge, cocaine challenge in vehicle pretreated mice induced a rapid increase (+208%) in DAT mRNA (45 min) followed by a delayed decrease (−70%) (24 h), while TH and D2 mRNA were both increased (+45%) 24 h after the challenge. In cocaine pretreated mice, cocaine-induced short-term increase and long-term decrease in DAT mRNA levels were amplified (+328%) and reduced (−40%), respectively.

Conclusions

Repeated exposure to cocaine alters the transcriptional response of DA neurons to a new cocaine challenge long after cessation of repeated exposure to the drug. They point to the DAT mRNA as a major responsive element to a new presentation of cocaine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DA:

dopamine

DAT:

dopamine transporter

D2:

autoreceptor D2

TH:

tyrosine hydroxylase

VTA:

ventral tegmental area

SNc:

substantia nigra pars compacta

Nacc:

nucleus accumbens

mRNA:

ribonucleic acid messenger

CS:

conditioned stimuli

References

  • Aoyama S, Koga K, Mori A, Miyaji H, Sekine S, Kase H, Uchimura T, Kobayashi H, Kuwana Y (2002) Distribution of adenosine A(2A) receptor antagonist KW-6002 and its effect on gene expression in the rat brain. Brain Res 953:119–125

    Article  PubMed  CAS  Google Scholar 

  • Badiani A, Browman KE, Robinson TE (1995) Influence of novel versus home environments on sensitization to the psychomotor stimulant effects of cocaine and amphetamine. Brain Res 674:291–298

    Article  PubMed  CAS  Google Scholar 

  • Bassareo V, De Luca MA, Di Chiara G (2007) Differential impact of pavlovian drug conditioned stimuli on in vivo dopamine transmission in the rat accumbens shell and core and in the prefrontal cortex. Psychopharmacology (Berl) 191:689–703

    Article  CAS  Google Scholar 

  • Beitner-Johnson D, Nestler EJ (1991) Morphine and cocaine exert common chronic actions on tyrosine hydroxylase in dopaminergic brain reward regions. J Neurochem 57:344–347

    Article  PubMed  CAS  Google Scholar 

  • Boulay D, Duterte-Boucher D, Leroux-Nicollet I, Naudon L, Costentin J (1996) Locomotor sensitization and decrease in [3H]mazindol binding to the dopamine transporter in the nucleus accumbens are delayed after chronic treatments by GBR12783 or cocaine. J Pharmacol Exp Ther 278:330–337

    PubMed  CAS  Google Scholar 

  • Carelli RM (2000) Activation of accumbens cell firing by stimuli associated with cocaine delivery during self-administration. Synapse 35:238–242

    Article  PubMed  CAS  Google Scholar 

  • Cerruti C, Pilotte NS, Uhl G, Kuhar MJ (1994) Reduction in dopamine transporter mRNA after cessation of repeated cocaine administration. Brain Res Mol Brain Res 22:132–138

    Article  PubMed  CAS  Google Scholar 

  • Covington HE 3rd, Miczek KA (2001) Repeated social-defeat stress, cocaine or morphine. Effects on behavioral sensitization and intravenous cocaine self-administration “binges”. Psychopharmacology (Berl) 158:388–398

    Article  CAS  Google Scholar 

  • Daws LC, Callaghan PD, Moron JA, Kahlig KM, Shippenberg TS, Javitch JA, Galli A (2002) Cocaine increases dopamine uptake and cell surface expression of dopamine transporters. Biochem Biophys Res Commun 290:1545–1550

    Article  PubMed  CAS  Google Scholar 

  • De Vries TJ, Schoffelmeer AN, Binnekade R, Mulder AH, Vanderschuren LJ (1998) Drug-induced reinstatement of heroin- and cocaine-seeking behaviour following long-term extinction is associated with expression of behavioural sensitization. Eur J Neurosci 10:3565–3571

    Article  PubMed  Google Scholar 

  • De Vries TJ, Schoffelmeer AN, Binnekade R, Raaso H, Vanderschuren LJ (2002) Relapse to cocaine- and heroin-seeking behavior mediated by dopamine D2 receptors is time-dependent and associated with behavioral sensitization. Neuropsychopharmacology 26:18–26

    Article  PubMed  Google Scholar 

  • Deroche-Gamonet V, Sillaber I, Aouizerate B, Izawa R, Jaber M, Ghozland S, Kellendonk C, Le Moal M, Spanagel R, Schutz G, Tronche F, Piazza PV (2003) The glucocorticoid receptor as a potential target to reduce cocaine abuse. J Neurosci 23:4785–4790

    PubMed  CAS  Google Scholar 

  • Everitt BJ, Wolf ME (2002) Psychomotor stimulant addiction: a neural systems perspective. J Neurosci 22:3312–3320

    PubMed  CAS  Google Scholar 

  • Farfel GM, Kleven MS, Woolverton WL, Seiden LS, Perry BD (1992) Effects of repeated injections of cocaine on catecholamine receptor binding sites, dopamine transporter binding sites and behavior in rhesus monkey. Brain Res 578:235–243

    Article  PubMed  CAS  Google Scholar 

  • Fauchey V, Jaber M, Bloch B, Le Moine C (2000) Dopamine control of striatal gene expression during development: relevance to knockout mice for the dopamine transporter. Eur J Neurosci 12:3415–3425

    Article  PubMed  CAS  Google Scholar 

  • Franklin KBJ, Paxinos G (1997) The Mouse Brain in Stereotaxic Coordinates. Academic Press, San Diego, CA

    Google Scholar 

  • Gainetdinov RR, Caron MG (2003) Monoamine transporters: from genes to behavior. Annu Rev Pharmacol Toxicol 43:261–284

    Article  PubMed  CAS  Google Scholar 

  • Hinson RE, Poulos CX (1981) Sensitization to the behavioral effects of cocaine: modification by Pavlovian conditioning. Pharmacol Biochem Behav 15:559–562

    Article  PubMed  CAS  Google Scholar 

  • Hope BT, Crombag HS, Jedynak JP, Wise RA (2005) Neuroadaptations of total levels of adenylate cyclase, protein kinase A, tyrosine hydroxylase, cdk5 and neurofilaments in the nucleus accumbens and ventral tegmental area do not correlate with expression of sensitized or tolerant locomotor responses to cocaine. J Neurochem 92:536–545

    Article  PubMed  CAS  Google Scholar 

  • Ito R, Dalley JW, Robbins TW, Everitt BJ (2002) Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. J Neurosci 22:6247–6253

    PubMed  CAS  Google Scholar 

  • Itzhak Y, Martin JL (1999) Effects of cocaine, nicotine, dizocipline and alcohol on mice locomotor activity: cocaine-alcohol cross-sensitization involves upregulation of striatal dopamine transporter binding sites. Brain Res 818:204–211

    Article  PubMed  CAS  Google Scholar 

  • Izawa R, Jaber M, Deroche-Gamonet V, Sillaber I, Kellendonk C, Le Moal M, Tronche F, Piazza PV (2006) Gene expression regulation following behavioral sensitization to cocaine in transgenic mice lacking the glucocorticoid receptor in the brain. Neuroscience 137:915–924

    Article  PubMed  CAS  Google Scholar 

  • Jaber M, Jones S, Giros B, Caron MG (1997) The dopamine transporter: a crucial component regulating dopamine transmission. Mov Disord 12:629–633

    Article  PubMed  CAS  Google Scholar 

  • Jaber M, Dumartin B, Sagne C, Haycock JW, Roubert C, Giros B, Bloch B, Caron MG (1999) Differential regulation of tyrosine hydroxylase in the basal ganglia of mice lacking the dopamine transporter. Eur J Neurosci 11:3499–3511

    Article  PubMed  CAS  Google Scholar 

  • Jones SR, Gainetdinov RR, Jaber M, Giros B, Wightman RM, Caron MG (1998) Profound neuronal plasticity in response to inactivation of the dopamine transporter. Proc Natl Acad Sci USA 95:402934

    Google Scholar 

  • Kalivas PW, Duffy P (1989) Similar effects of daily cocaine and stress on mesocorticolimbic dopamine neurotransmission in the rat. Biol Psychiatry 25:913–928

    Article  PubMed  CAS  Google Scholar 

  • Letchworth SR, Daunais JB, Hedgecock AA, Porrino LJ (1997) Effects of chronic cocaine administration on dopamine transporter mRNA and protein in the rat. Brain Res 750:214–222

    Article  PubMed  CAS  Google Scholar 

  • Licata SC, Pierce RC (2004) Repeated cocaine injections have no influence on tyrosine hydroxylase activity in the rat nucleus accumbens core or shell. Brain Res 1012:119–126

    Article  PubMed  CAS  Google Scholar 

  • Lucas LR, Schlussman SD, Ho A, McEwen BS, Kreek MJ (1997) Novelty-induced locomoter activity in Long-Evans rats pre- and post-chronic “binge”-pattern cocaine treatment. Neurosci Lett 237:25–28

    Article  PubMed  CAS  Google Scholar 

  • Marinelli M, White FJ (2000) Enhanced vulnerability to cocaine self-administration is associated with elevated impulse activity of midbrain dopamine neurons. J Neurosci 20:8876–8885

    PubMed  CAS  Google Scholar 

  • Masserano JM, Baker I, Natsukari N, Wyatt RJ (1996) Chronic cocaine administration increases tyrosine hydroxylase activity in the ventral tegmental area through glutaminergic- and dopaminergic D2-receptor mechanisms. Neurosci Lett 217:73–76

    Article  PubMed  CAS  Google Scholar 

  • Paulson PE, Robinson TE (1995) Amphetamine-induced time-dependent sensitization of dopamine neurotransmission in the dorsal and ventral striatum: a microdialysis study in behaving rats. Synapse 19:56–65

    Article  PubMed  CAS  Google Scholar 

  • Peris J, Zahniser NR (1987) One injection of cocaine produces a long-lasting increase in [3H]-dopamine release. Pharmacol Biochem Behav 27:533–535

    Article  PubMed  CAS  Google Scholar 

  • Pierce RC, Kalivas PW (1997) A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Brain Res Rev 25:192–216

    Article  PubMed  CAS  Google Scholar 

  • Pierce RC, Duffy P, Kalivas PW (1995) Sensitization to cocaine and dopamine autoreceptor subsensitivity in the nucleus accumbens. Synapse 20:33–36

    Article  PubMed  CAS  Google Scholar 

  • Pilotte NS, Sharpe LG, Kuhar MJ (1994) Withdrawal of repeated intravenous infusions of cocaine persistently reduces binding to dopamine transporters in the nucleus accumbens of Lewis rats. J Pharmacol Exp Ther 269:963–969

    PubMed  CAS  Google Scholar 

  • Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 18:247–291

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Berridge KC (2000) The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction 95(Suppl 2):S91–117

    Article  PubMed  Google Scholar 

  • Robinson TE, Berridge KC (2001) Incentive-sensitization and addiction. Addiction 96:103–114

    Article  PubMed  CAS  Google Scholar 

  • Roth RH (1984) CNS dopamine autoreceptors: distribution, pharmacology, and function. Ann N Y Acad Sci 430:27–53

    Article  PubMed  CAS  Google Scholar 

  • Seutin V, Verbanck P, Massotte L, Dresse A (1991) Acute amphetamine-induced subsensitivity of A10 dopamine autoreceptors in vitro. Brain Res 558:141–144

    Article  PubMed  CAS  Google Scholar 

  • Shilling PD, Kelsoe JR, Segal DS (1997) Dopamine transporter mRNA is up-regulated in the substantia nigra and the ventral tegmental area of amphetamine-sensitized rats. Neurosci Lett 236:131–134

    Article  Google Scholar 

  • Sorg BA, Chen SY, Kalivas PW (1993) Time course of tyrosine hydroxylase expression after behavioral sensitization to cocaine. J Pharmacol Exp Ther 266:424–430

    PubMed  CAS  Google Scholar 

  • Starke K, Gothert M, Kilbinger H (1989) Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol Rev 69:864–989

    PubMed  CAS  Google Scholar 

  • Tirelli E, Michel A, Brabant C (2005) Cocaine-conditioned activity persists for a longer time than cocaine-sensitized activity in mice: implications for the theories using Pavlovian excitatory conditioning to explain the context-specificity of sensitization. Behav Brain Res 165:18–25

    Article  PubMed  CAS  Google Scholar 

  • Todtenkopf MS, Stellar JR (2000) Assessment of tyrosine hydroxylase immunoreactive innervation in five subregions of the nucleus accumbens shell in rats treated with repeated cocaine. Synapse 38:261–270

    Article  PubMed  CAS  Google Scholar 

  • Todtenkopf MS, De Leon KR, Stellar JR (2000) Repeated cocaine treatment alters tyrosine hydroxylase in the rat nucleus accumbens. Brain Res Bull 52:407–411

    Article  PubMed  CAS  Google Scholar 

  • Vanderschuren LJ, Kalivas PW (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology (Berl) 151:99–120

    Article  CAS  Google Scholar 

  • Vanderschuren LJ, Schmidt ED, De Vries TJ, Van Moorsel CA, Tilders FJ, Schoffelmeer AN (1999) A single exposure to amphetamine is sufficient to induce long-term behavioral, neuroendocrine, and neurochemical sensitization in rats. J Neurosci 19:9579–9586

    PubMed  CAS  Google Scholar 

  • Vanderschuren LJ, Di Ciano P, Everitt BJ (2005) Involvement of the dorsal striatum in cue-controlled cocaine seeking. J Neurosci 25:8665–8670

    Article  PubMed  CAS  Google Scholar 

  • Vezina P, Lorrain DS, Arnold GM, Austin JD, Suto N (2002) Sensitization of midbrain dopamine neuron reactivity promotes the pursuit of amphetamine. J Neurosci 22:4654–4662

    PubMed  CAS  Google Scholar 

  • Wilson JM, Nobrega JN, Carroll ME, Niznik HB, Shannak K, Lac ST, Pristupa ZB, Dixon LM, Kish SJ (1994) Heterogeneous subregional binding patterns of 3H-WIN 35,428 and 3H-GBR 12,935 are differentially regulated by chronic cocaine self-administration. J Neurosci 14:2966–2979

    PubMed  CAS  Google Scholar 

  • Wolf ME, Roth RH (1990) Autoreceptor regulation of dopamine synthesis. Ann N Y Acad Sci 604:323–343

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Reith ME, Walker QD, Kuhn CM, Carroll FI, Garris PA (2002) Concurrent autoreceptor-mediated control of dopamine release and uptake during neurotransmission: an in vivo voltammetric study. J Neurosci 22:6272–6281

    PubMed  CAS  Google Scholar 

  • Xia Y, Goebel DJ, Kapatos G, Bannon MJ (1992) Quantitation of rat dopamine transporter mRNA: effects of cocaine treatment and withdrawal. J Neurochem 59:1179–1182

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Spangler R, Schlussman SD, Yuferov VP, Sora I, Ho A, Uhl GR, Kreek MJ (2002) Effects of acute “binge” cocaine on preprodynorphin, preproenkephalin, proopiomelanocortin, and corticotropin-releasing hormone receptor mRNA levels in the striatum and hypothalamic–pituitary–adrenal axis of mu-opioid receptor knockout mice. Synapse 45:220–229

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by INSERM, MILDT-INSERM and Région Aquitaine. MJ is supported by the CNRS, FRM, MILDT-INSERM and Région Poitou-Charentes. DB is supported by Foundation Fyssen. The authors would like to thank Drs. Joff Lee and Adam Mar for their precious help on the realization of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Deroche-Gamonet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belin, D., Deroche-Gamonet, V. & Jaber, M. Cocaine-induced sensitization is associated with altered dynamics of transcriptional responses of the dopamine transporter, tyrosine hydroxylase, and dopamine D2 receptors in C57Bl/6J mice. Psychopharmacology 193, 567–578 (2007). https://doi.org/10.1007/s00213-007-0790-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-007-0790-3

Keywords

Navigation