Skip to main content

Advertisement

Log in

Hippocampal SSTR4 somatostatin receptors control the selection of memory strategies

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Somatostatin (SS14) has been implicated in various cognitive disorders, and converging evidence from animal studies suggests that SS14 neurons differentially regulate hippocampal- and striatal-dependent memory formation. Four SS14 receptor subtypes (SSTR1–4) are expressed in the hippocampus, but their respective roles in memory processes remain to be determined.

Objectives

In the present study, effects of selective SSTR1–4 agonists on memory formation were assessed in a water-maze task which can engage either hippocampus-dependent “place” and/or striatum-dependent “cue” memory formation.

Materials and methods

Mice received an intrahippocampal injection of one of each of the selective agonists and were then trained to locate an escape platform based on either distal cues (place memory) or a visible proximal cue (cue memory). Retention was tested 24 h later on probe trials aimed at identifying which memory strategy was preferentially retained.

Results

Both SS14 and the SSTR4 agonist (L-803,087) dramatically impaired place memory formation in a dose-dependent manner, whereas SSTR1 (L-797,591), SSTR2 (L-779,976), or SSTR3 (L-796,778) agonists did not yield any behavioral effects. However, unlike SS14, the SSTR4 agonist also dose-dependently enhanced cue-based memory formation. This effect was confirmed in another striatal-dependent memory task, the bar-pressing task, where L-803,087 improved memory of the instrumental response, whereas SS14 was once again ineffective.

Conclusions

These data suggest that hippocampal SSTR4 are selectively involved in the selection of memory strategies by switching from the use of hippocampus-based multiple associations to the use of simple dorsal striatum-based behavioral responses. Possible neural mechanisms and functional implications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akbari E, Motamedi F, Naghdi N, Noorbakhshnua M (2008) The effect of antagonization of orexin 1 receptors in CA1 and dentate gyrus regions on memory processing in passive avoidance task. Behav Brain Res 187(1):172–177

    PubMed  CAS  Google Scholar 

  • Baraban SC, Tallent MK (2004) Interneuron Diversity series: interneuronal neuropeptides-endogenous regulators of neuronal excitability. Trends Neurosci 27(3):135–142

    Article  PubMed  CAS  Google Scholar 

  • Bissette G, Myers B (1992) Somatostatin in Alzheimer’s disease and depression. Life Sci 51(18):1389–1410

    Article  PubMed  CAS  Google Scholar 

  • Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R (1973) Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179(68):77–79

    Article  PubMed  CAS  Google Scholar 

  • Cammalleri M, Cervia D, Dal Monte M, Martini D, Langenegger D, Fehlmann D, Feuerbach D, Pavan B, Hoyer D, Bagnoli P (2006) Compensatory changes in the hippocampus of somatostatin knockout mice: upregulation of somatostatin receptor 2 and its function in the control of bursting activity and synaptic transmission. Eur J Neurosci 23(9):2404–2422

    Article  PubMed  Google Scholar 

  • Chang Q, Gold PE (2003a) Intra-hippocampal lidocaine injections impair acquisition of a place task and facilitate acquisition of a response task in rats. Behav Brain Res 144(1–2):19–24

    Article  PubMed  CAS  Google Scholar 

  • Chang Q, Gold PE (2003b) Switching memory systems during learning: changes in patterns of brain acetylcholine release in the hippocampus and striatum in rats. J Neurosci 23(7):3001–3005

    PubMed  CAS  Google Scholar 

  • Cohen NJ, Eichenbaum H (1993) Memory, amnesia and the hippocampal system (Bradford book). MIT, Cambridge USA

    Google Scholar 

  • Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, Henderson N, Hitzemann RJ, Maxson SC, Miner LL, Silva AJ, Wehner JM, Wynshaw-Boris A, Paylor R (1997) Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology (Berl) 132(2):107–124

    Article  CAS  Google Scholar 

  • Csaba Z, Dournaud P (2001) Cellular biology of somatostatin receptors. Neuropeptides 35(1):1–23

    Article  PubMed  CAS  Google Scholar 

  • DeNoble VJ, Hepler DJ, Barto RA (1989) Cysteamine-induced depletion of somatostatin produces differential cognitive deficits in rats. Brain Res 482(1):42–48

    Article  PubMed  CAS  Google Scholar 

  • Destrade C, Soumireu-Mourat B, Cardo B (1973) Effects of posttrial hippocampal stimulation on acquisition of operant behavior in the mouse. Behav Biol 8(6):713–724

    Article  PubMed  CAS  Google Scholar 

  • Devan BD, McDonald RJ, White NM (1999) Effects of medial and lateral caudate-putamen lesions on place- and cue-guided behaviors in the water maze: relation to thigmotaxis. Behav Brain Res 100(1–2):5–14

    Article  PubMed  CAS  Google Scholar 

  • Dutar P, Vaillend C, Viollet C, Billard JM, Potier B, Carlo AS, Ungerer A, Epelbaum J (2002) Spatial learning and synaptic hippocampal plasticity in type 2 somatostatin receptor knock-out mice. Neuroscience 112(2):455–466

    Article  PubMed  CAS  Google Scholar 

  • Dyer K, Cain DP (2007) Water maze impairments after combined depletion of somatostatin and serotonin in the rat. Behav Brain Res 181(1):85–95

    Article  PubMed  CAS  Google Scholar 

  • Epelbaum J, Dournaud P, Fodor M, Viollet C (1994) The neurobiology of somatostatin. Crit Rev Neurobiol 8(1–2):25–44

    PubMed  CAS  Google Scholar 

  • Eve DJ, Nisbet AP, Kingsbury AE, Temlett J, Marsden CD, Foster OJ (1997) Selective increase in somatostatin mRNA expression in human basal ganglia in Parkinson’s disease. Brain Res Mol Brain Res 50(1–2):59–70

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald LW, Dokla CP (1989) Morris water task impairment and hypoactivity following cysteamine-induced reductions of somatostatin-like immunoreactivity. Brain Res 505(2):246–250

    Article  PubMed  CAS  Google Scholar 

  • Franklin KB, Paxinos G (1996) The mouse brain in stereotaxic coordinates. Academic, San Diego CA

    Google Scholar 

  • Guillou JL, Micheau J, Jaffard R (1993) Effects of intrahippocampal injections of somatostatin and cysteamine on spatial discrimination learning in mice. Psychobiology 21(4):265–271

    CAS  Google Scholar 

  • Guillou JL, Micheau J, Jaffard R (1998) The opposite effects of cysteamine on the acquisition of two different tasks in mice are associated with bidirectional testing-induced changes in hippocampal adenylyl cyclase activity. Behav Neurosci 112(4):900–908

    Article  PubMed  CAS  Google Scholar 

  • Guillou JL, Micheau J, Jaffard R (1999) Intrahippocampal injections of cysteamine improve the retention of a bar-pressing task in mice. Behav Brain Res 103(1):113–117

    Article  PubMed  CAS  Google Scholar 

  • Hannon JP, Petrucci C, Fehlmann D, Viollet C, Epelbaum J, Hoyer D (2002) Somatostatin sst2 receptor knock-out mice: localisation of sst1–5 receptor mRNA and binding in mouse brain by semi-quantitative RT-PCR, in situ hybridisation histochemistry and receptor autoradiography. Neuropharmacology 42(3):396–413

    Article  PubMed  CAS  Google Scholar 

  • Haroutunian V, Mantin R, Campbell GA, Tsuboyama GK, Davis KL (1987) Cysteamine-induced depletion of central somatostatin-like immunoactivity: effects on behavior, learning, memory and brain neurochemistry. Brain Res 403(2):234–242

    Article  PubMed  CAS  Google Scholar 

  • Jaffard R, Destrade C, Soumireu-Moral B, Cardo B (1974) Time-dependent improvement of performance on appetitive tasks in mice. Behav Biol 11(1):89–100

    Article  PubMed  CAS  Google Scholar 

  • Jinno S, Kosaka T (2006) Cellular architecture of the mouse hippocampus: a quantitative aspect of chemically defined GABAergic neurons with stereology. Neurosci Res 56(3):229–245

    Article  PubMed  CAS  Google Scholar 

  • Kelley AE (2004) Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev 27(8):765–776

    Article  PubMed  Google Scholar 

  • Kreienkamp HJ, Akgun E, Baumeister H, Meyerhof W, Richter D (1999) Somatostatin receptor subtype 1 modulates basal inhibition of growth hormone release in somatotrophs. FEBS Lett 462(3):464–466

    Article  PubMed  CAS  Google Scholar 

  • Lamirault L, Guillou JL, Micheau J, Jaffard R (2001) Intrahippocampal injections of somatostatin dissociate acquisition from the flexible use of place responses. Eur J Neurosci 14(3):567–570

    Article  PubMed  CAS  Google Scholar 

  • Larsen J, Gasser K, Hahin R (1996) An analysis of dimethylsulfoxide-induced action potential block: a comparative study of DMSO and other aliphatic water soluble solutes. Toxicol Appl Pharmacol 140(2):296–314

    Article  PubMed  CAS  Google Scholar 

  • Martel G, Millard A, Jaffard R, Guillou JL (2006) Stimulation of hippocampal adenylyl cyclase activity dissociates memory consolidation processes for response and place learning. Learn Mem 13(3):342–348

    Article  PubMed  CAS  Google Scholar 

  • Martel G, Blanchard J, Mons N, Gastambide F, Micheau J, Guillou JL (2007) Dynamic interplays between memory systems depend on practice: the hippocampus is not always the first to provide solution. Neuroscience 150:743–753

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka N, Yamazaki M, Yamaguchi I (1995) Changes in brain somatostatin in memory-deficient rats: comparison with cholinergic markers. Neuroscience 66(3):617–626

    Article  PubMed  CAS  Google Scholar 

  • Matthews DB, Best PJ (1995) Fimbria/fornix lesions facilitate the learning of nonspatial response task. Psychol Bull Rev 2(1):113–116

    Google Scholar 

  • McDonald RJ, White NM (1994) Parallel information processing in the water maze: evidence for independent memory systems involving dorsal striatum and hippocampus. Behav Neural Biol 61(3):260–270

    Article  PubMed  CAS  Google Scholar 

  • McDonald RJ, Devan BD, Hong NS (2004) Multiple memory systems: the power of interactions. Neurobiol Learn Mem 82(3):333–346

    Article  PubMed  Google Scholar 

  • Moneta D, Richichi C, Aliprandi M, Dournaud P, Dutar P, Billard JM, Carlo AS, Viollet C, Hannon JP, Fehlmann D, Nunn C, Hoyer D, Epelbaum J, Vezzani A (2002) Somatostatin receptor subtypes 2 and 4 affect seizure susceptibility and hippocampal excitatory neurotransmission in mice. Eur J Neurosci 16(5):843–849

    Article  PubMed  CAS  Google Scholar 

  • Naghdi N, Asadollahi A (2004) Genomic and nongenomic effects of intrahippocampal microinjection of testosterone on long-term memory in male adult rats. Behav Brain Res 153(1):1–6

    Article  PubMed  CAS  Google Scholar 

  • Norris PJ, Waldvogel HJ, Faull RL, Love DR, Emson PC (1996) Decreased neuronal nitric oxide synthase messenger RNA and somatostatin messenger RNA in the striatum of Huntington’s disease. Neuroscience 72(4):1037–1047

    Article  PubMed  CAS  Google Scholar 

  • O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Clarendon, Oxford

    Google Scholar 

  • Packard MG (1999) Glutamate infused posttraining into the hippocampus or caudate-putamen differentially strengthens place and response learning. Proc Natl Acad Sci USA 96(22):12881–12886

    Article  PubMed  CAS  Google Scholar 

  • Packard MG, McGaugh JL (1996) Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiol Learn Mem 65(1):65–72

    Article  PubMed  CAS  Google Scholar 

  • Packard MG, Hirsh R, White NM (1989) Differential effects of fornix and caudate nucleus lesions on two radial maze tasks: evidence for multiple memory systems. J Neurosci 9(5):1465–1472

    PubMed  CAS  Google Scholar 

  • Patel YC (1999) Somatostatin and its receptor family. Front Neuroendocrinol 20(3):157–198

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer M, Koch T, Schroder H, Klutzny M, Kirscht S, Kreienkamp HJ, Hollt V, Schulz S (2001) Homo- and heterodimerization of somatostatin receptor subtypes. Inactivation of sst(3) receptor function by heterodimerization with sst(2A). J Biol Chem 276(17):14027–14036

    PubMed  CAS  Google Scholar 

  • Poldrack RA, Packard MG (2003) Competition among multiple memory systems: converging evidence from animal and human brain studies. Neuropsychologia 41(3):245–251

    Article  PubMed  Google Scholar 

  • Reisine T, Bell GI (1995) Molecular properties of somatostatin receptors. Neuroscience 67(4):777–790

    Article  PubMed  CAS  Google Scholar 

  • Rocheville M, Lange DC, Kumar U, Sasi R, Patel RC, Patel YC (2000) Subtypes of the somatostatin receptor assemble as functional homo- and heterodimers. J Biol Chem 275(11):7862–7869

    Article  PubMed  CAS  Google Scholar 

  • Rohrer SP, Birzin ET, Mosley RT, Berk SC, Hutchins SM, Shen DM, Xiong Y, Hayes EC, Parmar RM, Foor F, Mitra SW, Degrado SJ, Shu M, Klopp JM, Cai SJ, Blake A, Chan WW, Pasternak A, Yang L, Patchett AA, Smith RG, Chapman KT, Schaeffer JM (1998) Rapid identification of subtype-selective agonists of the somatostatin receptor through combinatorial chemistry. Science 282(5389):737–740

    Article  PubMed  CAS  Google Scholar 

  • Sagar SM, Millard WJ, Martin JB, Murchison SC (1985) The mechanism of action of cysteamine in depleting prolactin immunoreactivity. Endocrinology 117(2):591–600

    Article  PubMed  CAS  Google Scholar 

  • Schettini G (1991) Brain somatostatin: receptor-coupled transducing mechanisms and role in cognitive functions. Pharmacol Res 23(3):203–215

    Article  PubMed  CAS  Google Scholar 

  • Schroeder JP, Wingard JC, Packard MG (2002) Post-training reversible inactivation of hippocampus reveals interference between memory systems. Hippocampus 12(2):280–284

    Article  PubMed  Google Scholar 

  • Sharifzadeh M, Naghdi N, Khosrovani S, Ostad SN, Sharifzadeh K, Roghani A (2005) Post-training intrahippocampal infusion of the COX-2 inhibitor celecoxib impaired spatial memory retention in rats. Eur J Pharmacol 511(2–3):159–166

    Article  PubMed  CAS  Google Scholar 

  • Thoss VS, Perez J, Duc D, Hoyer D (1995) Embryonic and postnatal mRNA distribution of five somatostatin receptor subtypes in the rat brain. Neuropharmacology 34(12):1673–1688

    Article  PubMed  CAS  Google Scholar 

  • Thoss VS, Perez J, Probst A, Hoyer D (1996) Expression of five somatostatin receptor mRNAs in the human brain and pituitary. Naunyn Schmiedebergs Arch Pharmacol 354(4):411–419

    Article  PubMed  CAS  Google Scholar 

  • Vecsei L, Klivenyi P (1995) Somatostatin and Alzheimer’s disease. Arch Gerontol Geriatr 21(1):35–41

    Article  PubMed  CAS  Google Scholar 

  • Vecsei L, Bollok I, Telegdy G (1983) Intracerebroventricular somatostatin attenuates electroconvulsive shock-induced amnesia in rats. Peptides 4(3):293–295

    Article  PubMed  CAS  Google Scholar 

  • Vecsei L, Ekman R, Alling C, Widerlov E (1989) Influence of cysteamine and cysteine on open-field behaviour, and on brain concentrations of catecholamines, somatostatin, neuropeptide Y, and corticotropin releasing hormone in the rat. J Neural Transm Gen Sect 78(3):209–220

    Article  PubMed  CAS  Google Scholar 

  • Vezzani A, Hoyer D (1999) Brain somatostatin: a candidate inhibitory role in seizures and epileptogenesis. Eur J Neurosci 11(11):3767–3776

    Article  PubMed  CAS  Google Scholar 

  • Videau C, Hochgeschwender U, Kreienkamp HJ, Brennan MB, Viollet C, Richter D, Epelbaum J (2003) Characterisation of [125I]-Tyr0DTrp8-somatostatin binding in sst1- to sst4- and SRIF-gene-invalidated mouse brain. Naunyn Schmiedebergs Arch Pharmacol 367(6):562–571

    Article  PubMed  CAS  Google Scholar 

  • Viollet C, Vaillend C, Videau C, Bluet-Pajot MT, Ungerer A, L’Heritier A, Kopp C, Potier B, Billard J, Schaeffer J, Smith RG, Rohrer SP, Wilkinson H, Zheng H, Epelbaum J (2000) Involvement of sst2 somatostatin receptor in locomotor, exploratory activity and emotional reactivity in mice. Eur J Neurosci 12(10):3761–3770

    Article  PubMed  CAS  Google Scholar 

  • Weckbecker G, Lewis I, Albert R, Schmid HA, Hoyer D, Bruns C (2003) Opportunities in somatostatin research: biological, chemical and therapeutic aspects. Nat Rev Drug Discov 2(12):999–1017

    Article  PubMed  CAS  Google Scholar 

  • White NM, McDonald RJ (2002) Multiple parallel memory systems in the brain of the rat. Neurobiol Learn Mem 77(2):125–184

    Article  PubMed  Google Scholar 

  • Yamazaki M, Matsuoka N, Maeda N, Ohkubo Y, Yamaguchi I (1996) FK960 N-(4-acetyl-1-piperazinyl)-p-fluorobenzamide monohydrate ameliorates the memory deficits in rats through a novel mechanism of action. J Pharmacol Exp Ther 279(3):1157–1173

    PubMed  CAS  Google Scholar 

  • Zeyda T (1999) Genetic analysis of the somatostatin system. Thesis, University of Mainz, Germany

  • Zheng H, Bailey A, Jiang MH, Honda K, Chen HY, Trumbauer ME, Van der Ploeg LH, Schaeffer JM, Leng G, Smith RG (1997) Somatostatin receptor subtype 2 knockout mice are refractory to growth hormone-negative feedback on arcuate neurons. Mol Endocrinol 11(11):1709–1717

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank Merck and Co, Inc. (NJ, USA) for generously providing the SSTRs selective agonists and Dr. Tom Durkin for helpful comments on the manuscript. This study was supported by the CNRS, the INSERM, and the Conseil Régional d’Aquitaine. FG and GL hold fellowships from the Ministère de l’Enseignement Supérieur et de la Recherche.

Conflict of interest

All listed authors have contributed significantly to the manuscript and consent to their names on the manuscript. The authors declare that there is no possible conflict of interest in the conduct and reporting of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Guillou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gastambide, F., Viollet, C., Lepousez, G. et al. Hippocampal SSTR4 somatostatin receptors control the selection of memory strategies. Psychopharmacology 202, 153–163 (2009). https://doi.org/10.1007/s00213-008-1204-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1204-x

Keywords

Navigation