Skip to main content
Log in

Effect of ceftriaxone and topiramate treatments on naltrexone-precipitated morphine withdrawal and glutamate receptor desensitization in the rat locus coeruleus

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Morphine withdrawal is associated with a hyperactivity of locus coeruleus (LC) neurons by an elevated glutamate neurotransmission in this nucleus. We postulate that reductions in the amount of glutamate in the LC by enhancing its reuptake or inhibiting its release could attenuate the behavioral and cellular consequences of morphine withdrawal.

Objectives

We investigated the effect of chronic treatment with ceftriaxone (CFT), an excitatory amino acid transporter (EAAT2) enhancer, and acute administration of topiramate (TPM), a glutamate release inhibitor, on morphine withdrawal syndrome and withdrawal-induced glutamate receptor (GluR) desensitization in LC neurons from morphine-dependent rats.

Methods

Morphine withdrawal behavior was measured after naltrexone administration in rats implanted with a morphine (200 mg kg−1) emulsion for 3 days. GluR desensitization in the LC was assessed by performing concentration-effect curves for glutamate by extracellular electrophysiological recordings in vitro.

Results

Treatments with CFT or TPM reduced, in a dose-related manner, the total behavioral score of naltrexone-precipitated morphine withdrawal. CFT and TPM, at doses that were effective in behavioral tests, also reduced the induction of GluR desensitization normally occurring in LC neurons from morphine-dependent rats. Acute treatment with the specific EAAT2 inhibitor dihydrokainic acid (DHK) prevented the effect of CFT on withdrawal syndrome and GluR desensitization. Perfusion with TPM inhibited KCl-evoked but not glutamate-induced activation of LC neurons in vitro.

Conclusions

Our results suggest that a reduction of synaptic concentrations of glutamate by enhancing EAAT2-mediated uptake or inhibiting glutamate release alleviates the behavioral response and the cellular changes in the LC during opiate withdrawal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

AMPA:

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

aCSF:

Artificial cerebrospinal fluid

CFT:

Ceftriaxone

DHK:

Dihydrokainic acid

EC50 :

Half maximal effective concentration

E max :

Maximal effect

EAAT:

Excitatory amino acid transporter

EAAT2:

Type-2 excitatory amino acid transporter

GABA:

Gamma-aminobutyric acid

iGluR:

Ionotropic glutamate receptor

KCl:

Potassium chloride

LC:

Locus coeruleus

mGluR:

Metabotropic glutamate receptor

MOR:

μ opioid receptor

Nav channel:

Voltage-dependent sodium channel

NMDA:

N-methyl-d-aspartic acid

S.E.M.:

Standard error of the mean

TPM:

Topiramate

References

  • Aghajanian GK (1978) Tolerance of locus coeruleus neurons to morphine and suppression of withdrawal response by clonidine. Nature 276:186–188

    Article  CAS  PubMed  Google Scholar 

  • Aghajanian GK, Kogan JH, Moghaddam B (1994) Opiate withdrawal increases glutamate and aspartate efflux in the locus-coeruleus—an in-vivo microdialysis study. Brain Res 636:126–130

    Article  CAS  PubMed  Google Scholar 

  • Akaoka H, Aston-Jones G (1991) Opiate withdrawal induced hyperactivity of locus-coeruleus neurons is substantially mediated by augmented excitatory amino-acid input. J Neurosci 11:3830–3839

    CAS  PubMed  Google Scholar 

  • Alajaji M, Bowers MS, Knackstedt L, Damaj MI (2013) Effects of the beta-lactam antibiotic ceftriaxone on nicotine withdrawal and nicotine-induced reinstatement of preference in mice. Psychopharmacology (Berl) 228:429–426

    Article  Google Scholar 

  • Andrade R, Aghajanian GK (1984) Intrinsic regulation of locus coeruleus neurons—electrophysiological evidence indicating a predominant role for autoinhibition. Brain Res 310:401–406

    Article  CAS  PubMed  Google Scholar 

  • Angehagen M, Ben-Menachem E, Rönnbäck L, Hansson E (2003) Novel mechanisms of action of three antiepileptic drugs, vigabatrin, tiagabine, and topiramate. Neurochem Res 28:333–340

    Article  CAS  PubMed  Google Scholar 

  • Aston-Jones G (2005) Brain structures and receptors involved in alertness. Sleep Med 6(S3):7

    Google Scholar 

  • Beart PM, O’Shea RD (2007) Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol 150:5–17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bell JA, Grant SJ (1998) Locus coeruleus neurons from morphine-treated rats do not show opiate-withdrawal hyperactivity in vitro. Brain Res 788:237–244

    Article  CAS  PubMed  Google Scholar 

  • Berridge CW, Waterhouse BD (2003) The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev 42:33–84

    Article  PubMed  Google Scholar 

  • Bisaga A, Sullivan MA, Cheng WY, Carpenter KM, Mariani JJ, Levin FR, Raby WN, Nunes EV (2011) A placebo controlled trial of memantine as an adjunct to oral naltrexone for opioid dependence. Drug Alc Dep 119:23–29

    Article  Google Scholar 

  • Bunch LM, Erichsen N, Jensen AA (2009) Excitatory amino acid transporters as potential drug targets. Exp Op Therap Targets 13:719–731

    Article  CAS  Google Scholar 

  • Chen Z, He Y, Wang ZJ (2012) The beta-lactam antibiotic, ceftriaxone, inhibits the development of opioid-induced hyperalgesia in mice. Neurosci Lett 509(2):69–71

    Article  CAS  PubMed  Google Scholar 

  • Coupar IM (1992) Effect of alpha 2-adrenoceptor agonists on the expression of morphine-withdrawal in rats. Naunyn Schmiedeberg’s Arch Pharmacol 345:553–557

    Article  CAS  Google Scholar 

  • Cruz HG, Berton F, Sollini M, Blanchet C, Pravetoni M, Wickman K, Luscher C (2008) Absence and rescue of morphine withdrawal in GIRK/Kir3 knock-out mice. J Neurosci 28:4069–4077

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Drolet G, Van Bockstaele EJ, Aston-Jones G (1992) Robust enkephalin innervation of the locus coeruleus from the rostral medulla. J Neurosci 12:3162–3174

    CAS  PubMed  Google Scholar 

  • Gallego X, Murtra P, Zamalloa T, Canals JM, Pineda J, Amador-Arjona A, Maldonado R, Dierssen M (2010) Increased opioid dependence in a mouse model of panic disorder. Front Behav Neurosci 3:60

    PubMed Central  PubMed  Google Scholar 

  • Grandoso L, Pineda J, Ugedo L (2004) Comparative study of the effects of desipramine and reboxetine on locus coeruleus neurons in rat brain slices. Neuropharmacology 46:815–823

    Article  CAS  PubMed  Google Scholar 

  • Harris AC, Rothwell PE, Gewirtz JC (2008) Effects of the NMDA receptor antagonist memantine on the expression and development of acute opiate dependence as assessed by withdrawal-potentiated startle and hyperalgesia. Psychopharmacology 196:649–660

    Article  CAS  PubMed  Google Scholar 

  • Jensen AA, Brauner-Osborne H (2004) Pharmacological characterization of human excitatory amino acid transporters EAAT1, EAAT2 and EAAT3 in a fluorescence-based membrane potential assay. Biochem Pharmacol 67:2115–2127

    Article  CAS  PubMed  Google Scholar 

  • Kanda T, Kurokawa M, Tamura S, Nakamura J, Ishii A, Kuwana Y, Serikawa T, Yamada J, Ishihara K, Sasa M (1996) Topiramate reduces abnormally high extracellular levels of glutamate and aspartate in the hippocampus of spontaneously epileptic rats (SER). Life Sci 59:1607–1616

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Lee SG, Kegelman TP, Su ZZ, Das SK, Dash R, Dasgupta S, Barral PM, Hedvat M, Diaz P, Reed JC, Stebbins JL, Pellecchia M, Sarkar D, Fisher PB (2011) Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics. J Cell Physiol 226:2484–2493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kogan JH, Aghajanian GK (1995) Long-term glutamate desensitization in locus-coeruleus neurons and its role in opiate withdrawal. Brain Res 689:111–121

    Article  CAS  PubMed  Google Scholar 

  • Kogan JH, Nestler EJ, Aghajanian GK (1992) Elevated basal firing rates and enhanced responses to 8-br-camp in locus-ceruleus neurons in brain-slices from opiate-dependent rats. Eur J Pharmacol 211:47–53

    Article  CAS  PubMed  Google Scholar 

  • Koob GF, Maldonado R, Stinus L (1992) Neural substrates of opiate withdrawal. Trends Neurosci 15:186–191

    Article  CAS  PubMed  Google Scholar 

  • Lane-Ladd SB, Pineda J, Boundy VA, Pfeuffer T, Krupinski J, Aghajanian GK, Nestler EJ (1997) CREB (cAMP response element-binding protein) in the locus coeruleus: biochemical, physiological, and behavioral evidence for a role in opiate dependence. J Neurosci 17:7890–7901

    CAS  PubMed  Google Scholar 

  • Lee SG, Su ZZ, Emdad L, Gupta P, Sarkar D, Borjabad A, Volsky DJ, Fisher PB (2008) Mechanism of ceftriaxone induction of excitatory amino acid transporter-2 expression and glutamate uptake in primary human astrocytes. J Biol Chem 283:13116–13123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin CLG, Kong QM, Cuny QD, Glicksman MA (2012) Glutamate transporter EAAT2: a new target for the treatment of neurodegenerative diseases. Fut Med Chem 4:1689–1700

    Article  CAS  Google Scholar 

  • Maldonado R, Koob GF (1993) Destruction of the locus-ceruleus decreases physical signs of opiate withdrawal. Brain Res 605:128–138

    Article  CAS  PubMed  Google Scholar 

  • McLemore GL, Kest BL, Inturrisi CE (1997) The effects of LY293558, an AMPA receptor antagonist, on acute and chronic morphine dependence. Brain Res 778:120–126

    Article  CAS  PubMed  Google Scholar 

  • Medrano MC, Gerrikagoitia I, Martínez-Millán L, Mendiguren A, Pineda J (2013) Functional and morphological characterization of glutamate transporters in the rat locus coeruleus. Br J Pharmacol 169:1781–1794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mendiguren A, Pineda J (2007) CB1 cannabinoid receptors inhibit the glutamatergic component of KCl-evoked excitation of locus coeruleus neurons in rat brain slices. Neuropharmacology 52:617–625

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ (2004) Historical review: molecular and cellular mechanisms of opiate and cocaine addiction. Trends Pharmacol Sci 25:210–218

    Article  CAS  PubMed  Google Scholar 

  • Niciu MJ, Kelmendi B, Sanacora G (2012) Overview of glutamatergic neurotransmission in the nervous system. Pharmacol Biochem Behav 100:656–664

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Noda Y, Nabeshima T (2004) Opiate physical dependence and N-methyl-D-aspartate receptors. Eur J Pharmacol 500:121–128

    Article  CAS  PubMed  Google Scholar 

  • Olpe HR, Steinmann MW, Brugger F, Pozza MF (1989) Excitatory amino-acid receptors in rat locus coeruleus—an extracellular in vitro study. Naunyn-Schmiedeberg’s Arch Pharmacol 339:312–314

    Article  CAS  Google Scholar 

  • Ozawa T, Nakagawa T, Sekiya Y, Minami M, Satoh M (2004) Effect of gene transfer of GLT-1, a glutamate transporter, into the locus coeruleus by recombinant adenoviruses on morphine physical dependence in rats. Eur J Neurosci 19:221–226

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates, 5th edn. Elsevier Academic Press, Burlington

    Google Scholar 

  • Pineda J, Torrecilla M, Martin-Ruiz R, Ugedo L (1998) Attenuation of withdrawal-induced hyperactivity of locus coeruleus neurones by inhibitors of nitric oxide synthase in morphine-dependent rats. Neuropharmacology 37:759–767

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen K, Aghajanian GK (1989) Withdrawal-induced activation of locus coeruleus neurons in opiate-dependent rats—attenuation by lesions of the nucleus paragigantocellularis. Brain Res 505:346–350

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen K, Beitnerjohnson DB, Krystal JH, Aghajanian GK, Nestler EJ (1990) Opiate withdrawal and the rat locus-ceruleus—behavioural, electrophysiological, and biochemical correlates. J Neurosci 10:2308–2317

    CAS  PubMed  Google Scholar 

  • Rasmussen K, Kendrick WT, Kogan JH, Aghajanian GK (1996) A selective AMPA antagonist, LY293558, suppresses morphine withdrawal-induced activation of locus coeruleus neurons and behavioural signs of morphine withdrawal. Neuropsychopharmacology 15:497–505

    Article  CAS  PubMed  Google Scholar 

  • Rawls SM, Tallarida R, Robinson W, Amin M (2007) The beta-lactam antibiotic, ceftriaxone, attenuates morphine-evoked hyperthermia in rats. Br J Pharmacol 151:1095–1102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rawls SM, Baron DA, Kim J (2010a) Beta-lactam antibiotic inhibits development of morphine physical dependence in rats. Behav Pharmacol 21:161–164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rawls SM, Zielinski M, Patel H, Sacavage S, Baron DA, Patel D (2010b) Beta-lactam antibiotic reduces morphine analgesic tolerance in rats through GLT-1 transporter activation. Drug Alcohol Dep 107:261–263

    Article  CAS  Google Scholar 

  • Rothstein JD, Martin L, Levey AI, Dykeshoberg M, Jin L, Wu D, Nash N, Kuncl RW (1994) Localization of neuronal and glial glutamate transporters. Neuron 13:713–725

    Article  CAS  PubMed  Google Scholar 

  • Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, Jin L, Dykes Hoberg M, Vidensky S, Chung DS, Toan SV, Bruijn LI, Su ZZ, Gupta P, Fisher PB (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433:73–77

    Article  CAS  PubMed  Google Scholar 

  • Salem A, Hope W (1999) Role of endogenous adenosine in the expression of opiate withdrawal in rats. Eur J Pharmacol 369:39–42

    Article  CAS  PubMed  Google Scholar 

  • Santamarta MT, Ulibarri I, Pineda J (2005) Inhibition of neuronal nitric oxide synthase attenuates the development of morphine tolerance in rats. Synapse 57:38–46

    Article  CAS  PubMed  Google Scholar 

  • Schroeder JA, Tolman NG, McKenna FF, Watkins KL, Passeri SM, Hsu AH, Shinn BR, Rawls SM (2014) Clavulanic acid reduces rewarding, hyperthermic and locomotor-sensitizing effects of morphine in rats: a new indication for an old drug? Drug Alcohol Depend 142:41–45

    Article  CAS  PubMed  Google Scholar 

  • Sepúlveda JJ, Astorga G, Contreras E (1999) Riluzole decreases the abstinence syndrome and physical dependence in morphine-dependent mice. Eur J Pharmacol 379(59):62

    Google Scholar 

  • Sitges M, Guarneros A, Nekrassov V (2007) Effects of carbamazepine, phenytoin, valproic acid, oxcarbazepine, lamotrigine, topiramate and vinpocetine on the presynaptic Ca2+ channel-mediated release of [3H]glutamate: comparison with the Na+ channel-mediated release. Neuropharmacology 53:854–862

    Article  CAS  PubMed  Google Scholar 

  • Trantham-Davidson H, LaLumiere RT, Reissner KJ, Kalivas PW, Knackstedt LA (2012) Ceftriaxone normalizes nucleus accumbens synaptic transmission, glutamate transport, and export following cocaine self-administration and extinction training. J Neurosci 32:12406–12410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trujillo KA, Akil H (1991) Inhibition of morphine-tolerance and dependence by the NMDA receptor antagonist MK-801. Science 251:85–87

    Article  CAS  PubMed  Google Scholar 

  • Valverde O, Mantamadiotis T, Torrecilla M, Ugedo L, Pineda J, Bleckmann S, Gass P, Kretz O, Mitchell JM, Schütz G, Maldonado R (2004) Modulation of anxiety-like behavior and morphine dependence in CREB-deficient mice. Neuropsychopharmacology 29:1122–1133

    Article  CAS  PubMed  Google Scholar 

  • Verma A, Kulkarni SK (1995) Role of D-1/D-2 dopamine and N-methyl-D-aspartate (NMDA) receptors in morphine-tolerance and dependence in mice. Eur Neuropsychopharmacol 5:81–87

    Article  CAS  PubMed  Google Scholar 

  • Zamalloa T, Pineda J (2006) Glutamatergic responses are desensitized after precipitation of opiate withdrawal by naltrexone in locus coeruleus neurons. Program No. 765.21. 2006 Neuroscience Meeting Planner. Atlanta, GA: Society for Neuroscience, 2006. Online

  • Zullino DF, Cottier AC, Besson J (2002) Topiramate in opiate withdrawal. Progr Neuro-Psychopharmacol Biol Psych 26:1221–1223

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministerio de Ciencia e Innovación [Grant SAF2008-03612] and the University of the Basque Country (UPV/EHU) [Grant GIU11/27 and Grant GIU14/29]. Pineda’s research group takes part in a network unit supported by the University of the Basque Country [UFI 11/35]. MC Medrano was supported by a predoctoral fellowship from the Basque Government. The experiments comply with the current laws of Spain.

Conflict of interest

There are no conflict of interest and no financial relationship with the Organization that sponsored the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseba Pineda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medrano, M.C., Mendiguren, A. & Pineda, J. Effect of ceftriaxone and topiramate treatments on naltrexone-precipitated morphine withdrawal and glutamate receptor desensitization in the rat locus coeruleus. Psychopharmacology 232, 2795–2809 (2015). https://doi.org/10.1007/s00213-015-3913-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-015-3913-2

Keywords

Navigation