Skip to main content
Log in

Global hybrid exchange energy functional with correct asymptotic behavior of the corresponding potential

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A non-empirical global hybrid exchange–correlation energy functional which leads to an exchange potential with correct asymptotic behavior is presented. The exchange functional combines one-fourth of exact exchange with three-fourths of the correct asymptotic potential (CAP) generalized gradient approximation functional. It is combined with the Perdew–Burke–Ernzerhof correlation energy with a slightly modified parameterization so as to cancel the gradient terms of CAP exchange with that of correlation, in the limit of slowly varying density. The resulting global hybrid functional, called CAP0, gives heats of formation, ionization potentials, electron affinities, proton affinities, binding energies of weakly interacting systems, barrier heights for hydrogen and non-hydrogen transfer reactions, bond distances, and harmonic frequencies on standard test sets that are competitive with results from other long-range-corrected, Coulomb-attenuated, or global hybrid functionals. In fact, they are generally superior to or competitive with CAM-PBE0 and, except for heats of formation, with CAM-B3LYP as well. Advantageously, the Rydberg excitation energies from CAP0 are superior to those of other global hybrids and of the long-range-corrected hybrids. They are similar to those from CAM-B3LYP and modestly inferior to the CAM-PBE0 errors. For the valence excitations, we did not find substantial differences for all the hybrid functionals considered, while the oscillator strengths from CAP0 are better to those of other global hybrids and comparable to those obtained with long-range-corrected and Coulomb-attenuated hybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hohenberg P, Kohn W (1964) Phys Rev 136:B864–B871

    Article  Google Scholar 

  2. Kohn W, Sham LJ (1965) Phys Rev 137:A1697–A1705

    Article  Google Scholar 

  3. Engel E, Dreizler RM (2011) Density functional theory. Springer, Berlin

    Book  Google Scholar 

  4. Parr RG, Yang WT (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  5. Dreizler RM, Gross EKU (1990) Density functional theory. Springer, Berlin

    Book  Google Scholar 

  6. Perdew JP, Kurth S (2003) In: Fiolhais C, Nogueira F, Marques MAL (eds) A primer in density functional theory. Springer, Berlin, pp 1–55

    Chapter  Google Scholar 

  7. Perdew JP, Ruzsinszky A, Tao JM, Staroverov VN, Scuseria GE, Csonka GI (2005) J Chem Phys 123(6):062201

    Article  CAS  Google Scholar 

  8. Scuseria GE, Staroverov VN (2005) In: Dykstra C, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry: the first forty years. Elsevier, Amsterdam, pp 669–724

    Chapter  Google Scholar 

  9. Burke K (2012) J Chem Phys 136(15):150901

    Article  CAS  Google Scholar 

  10. Cohen AJ, Mori-Sanchez P, Yang WT (2012) Chem Rev 112:289–320

    Article  CAS  Google Scholar 

  11. Becke AD (2014) J Chem Phys 140:18A301

    Article  CAS  Google Scholar 

  12. Calaminici P, Domínguez-Soria VD, Moreno RF, Gamboa GU, Geudtner G, Goursot A, Salahub DR, Köster AM (2011) In: Leszczynski J (ed) Handbook of computational chemistry. Springer, Berlin

    Google Scholar 

  13. Geudtner G, Calaminici P, Carmona-Espíndola J, del Campo JM, Domínguez-Soria VD, Moreno RF, Gamboa GU, Goursot A, Köster AM, Reveles JU, Mineva T, Vásquez-Pérez JM, Vela A, Zúñiga-Gutiérrez B, Salahub DR (2012) Wiley Interdiscip Rev Comput Mol Sci 2:548–555

    Article  CAS  Google Scholar 

  14. Chakravarty S, Fogel MB, Kohn W (1979) Phys Rev Lett 43:775–778

    Article  CAS  Google Scholar 

  15. Bartolotti LJ (1981) Phys Rev A 24:1661–1667

    Article  CAS  Google Scholar 

  16. Bartolotti LJ (1982) Phys Rev A 26:2243–2244

    Article  CAS  Google Scholar 

  17. Deb BM, Gosh SK (1982) J Chem Phys 77:342–348

    Article  CAS  Google Scholar 

  18. Gosh SK, Deb BM (1982) Chem Phys 71:295–306

    Article  Google Scholar 

  19. Runge E, Gross EKU (1984) Phys Rev Lett 52:997–1000

    Article  CAS  Google Scholar 

  20. Mearns D, Kohn W (1987) Phys Rev A 35:4796–4799

    Article  Google Scholar 

  21. Gross EKU, Kohn W (1990) Adv Quantum Chem 21:255–291

    Article  CAS  Google Scholar 

  22. Marques MAL, Ullrich CA, Nogueira F, Rubio A, Burke K, Gross EKU (eds) (2006) Time dependent density functional theory, vol 706. Lecture notes in physics. Springer, Berlin

  23. Marques MAL, Maitra NT, Nogueira FMS, Gross EKU, Rubio A (eds) (2012) Fundamentals of time-dependent density functional theory, vol 837. Lecture notes in physics. Springer, Berlin

  24. Casida ME (1996) In: Seminario JM (ed) Recent developments and applications of modern density functional theory. Theoretical and computational chemistry, vol 4. Elsevier, Amsterdam, pp 391–439

    Chapter  Google Scholar 

  25. Casida ME (1995) In: Chong DP (ed) Recent advances in density functional methods, vol I. World Scientific, Singapore

    Google Scholar 

  26. Jamorski C, Casida ME, Salahub DR (1996) J Chem Phys 104:5134–5147

    Article  CAS  Google Scholar 

  27. Ipatov A, Fouqueau A, dell Valle CP, Córdova F, Casida ME, Köster AM, Vela A, Jamorski CJ (2006) J Mol Struct (THEOCHEM) 179:179–191

    Article  CAS  Google Scholar 

  28. Yabana K, Bertsch GF (1999) Int J Quantum Chem 75:55–66

    Article  CAS  Google Scholar 

  29. López X, Marques MA, Castro A, Rubio A (2005) J Am Chem Soc 127:12329–12337

    Article  CAS  Google Scholar 

  30. Malloci G, Mulas G, Cappellini G, Joblin C (2007) Chem Phys 340:43–58

    Article  CAS  Google Scholar 

  31. Koponen L, Puska MJ, Nieminen RM (2008) J Chem Phys 128:154307

    Article  CAS  Google Scholar 

  32. Cappellini G, Malloci G, Mulas G (2009) Superlattices Microstruct 46:14–18

    Article  CAS  Google Scholar 

  33. Kawashita Y, Yabana K, Noda M, Nobusada K, Nakatsukasa T (2009) J Mol Struct (THEOCHEM) 914:130–135

    Article  CAS  Google Scholar 

  34. Sham LJ (1985) Phys Rev B 32(6):3876–3882

    Article  CAS  Google Scholar 

  35. Almbladh CO, vonBarth U (1985) Phys Rev B 31(6):3231–3244

    Article  CAS  Google Scholar 

  36. Harbola MK, Sahni V (1989) Phys Rev Lett 62(5):489–492

    Article  CAS  Google Scholar 

  37. Tozer DJ, Handy NC (1998) J Chem Phys 109(23):10180–10189

    Article  CAS  Google Scholar 

  38. Casida ME, Salahub DR (2000) J Chem Phys 113(20):8918–8935

    Article  CAS  Google Scholar 

  39. Gruning M, Gritsenko OV, van Gisbergen SJA, Baerends EJ (2001) J Chem Phys 114(2):652–660

    Article  CAS  Google Scholar 

  40. Gázquez JL, Garza J, Hinojosa FD, Vela A (2007) J Chem Phys 126(21):214105

    Article  CAS  Google Scholar 

  41. Gázquez JL, Garza J, Vargas R, Vela A (2008) In: Diaz-Herrera E, Juaristi E (eds) Recent developments in physical chemistry, vol 979. AIP conference proceedings, pp 11–20

  42. Dirac PAM (1930) Proc Camb Philos Soc 26:376–385

    Article  CAS  Google Scholar 

  43. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  44. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  45. Zhang YK, Yang WT (1998) Phys Rev Lett 80(4):890–893

    Article  CAS  Google Scholar 

  46. Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou XL, Burke K (2008) Phys Rev Lett 100(13):136406

    Article  CAS  Google Scholar 

  47. Constantin LA, Fabiano E, Laricchia S, Della Sala F (2011) Phys Rev Lett 106(18):186406

    Article  CAS  Google Scholar 

  48. del Campo JM, Gázquez JL, Trickey SB, Vela A (2012) J Chem Phys 136(10):104108

    Article  CAS  Google Scholar 

  49. Hammer B, Hansen LB, Norskov JK (1999) Phys Rev B 59(11):7413–7421

    Article  Google Scholar 

  50. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  51. Lee C, Yang WT, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  52. Handy NC, Cohen AJ (2001) Mol Phys 99:403–412

    Article  CAS  Google Scholar 

  53. Vela A, Medel V, Trickey SB (2009) J Chem Phys 130:244103

    Article  CAS  Google Scholar 

  54. Vela A, Pacheco-Kato JC, Gázquez JL, del Campo JM, Trickey SB (2012) J Chem Phys 136:144115

    Article  CAS  Google Scholar 

  55. Gázquez JL, del Campo JM, Trickey SB, Alvarez-Mendez RJ, Vela A (2013) In: Ghosh SK, Chattaraj PK (eds) Concepts and methods in modern theoretical chemistry. CRC Press, Boca Raton, pp 295–311

    Google Scholar 

  56. Peverati R, Zhao Y, Truhlar DG (2011) J Phys Chem Lett 2(16):1991–1997

    Article  CAS  Google Scholar 

  57. Pacheco-Kato JC, del Campo MJ, Gázquez JL, Trickey SB, Vela A (2016) Chem Phys Lett (in press)

  58. Casida ME, Jamorsky C, Casida KC, Salahub DR (1998) J Chem Phys 108:4439–4449

    Article  CAS  Google Scholar 

  59. van Leuwen R, Baerends EJ (1994) Phys Rev A 49:2421–2431

    Article  Google Scholar 

  60. Hirata S, Zhan CG, Apra E, Windus TL, Dixon DA (2003) J Phys Chem A 107:10154–10158

    Article  CAS  Google Scholar 

  61. Görling A (1999) Phys Rev Lett 83:5459–5462

    Article  Google Scholar 

  62. Ivanov S, Hirata S, Bartlett RJ (1999) Phys Rev Lett 83:5455–5458

    Article  CAS  Google Scholar 

  63. Garza J, Nichols JA, Dixon DA (2000) J Chem Phys 112:7880–7890

    Article  CAS  Google Scholar 

  64. Garza J, Nichols JA, Dixon DA (2000) J Chem Phys 112:1150–1157

    Article  CAS  Google Scholar 

  65. Umezawa N (2006) Phys Rev A 74:032505

    Article  CAS  Google Scholar 

  66. Gaiduk AP, Mizzi D, Staroverov VN (2012) Phys Rev A 86:052518

    Article  CAS  Google Scholar 

  67. Gaiduk AP, Firaha DS, Staroverov VN (2012) Phys Rev Lett 108:253005

    Article  CAS  Google Scholar 

  68. Gritsenko OV, Schipper PRT, Baerends EJ (1999) Chem Phys Lett 302:199–207

    Article  CAS  Google Scholar 

  69. Gritsenko OV, Schipper PRT, Baerends EJ (2000) Int J Quantum Chem 76:407–419

    Article  CAS  Google Scholar 

  70. Schipper PRT, Gritsenko OV, van Gisbergen SJA, Baerends EJ (2000) J Chem Phys 112:1344–1352

    Article  CAS  Google Scholar 

  71. Gaiduk AP, Chulkov SK, Staroverov VN (2009) J Chem Theory Comput 5(4):699–707

    Article  CAS  Google Scholar 

  72. Gaiduk AP, Staroverov VN (2009) J Chem Phys 131(4):044107

    Article  CAS  Google Scholar 

  73. Gaiduk AP, Staroverov VN (2010) J Chem Phys 133(10):101104

    Article  CAS  Google Scholar 

  74. Gaiduk AP, Staroverov VN (2011) Phys Rev A 83(1):012509

    Article  CAS  Google Scholar 

  75. Elkind PD, Staroverov VN (2012) J Chem Phys 136(12):124115

    Article  CAS  Google Scholar 

  76. Karolewski A, Armiento R, Kummel S (2013) Phys Rev A 88(5):052519

    Article  CAS  Google Scholar 

  77. Engel E, Vosko SH (1994) Phys Rev B 50(15):10498–10505

    Article  CAS  Google Scholar 

  78. Jemmer P, Knowles PJ (1995) Phys Rev A 51(5):3571–3575

    Article  CAS  Google Scholar 

  79. Filatov M, Thiel W (1998) Phys Rev A 57(1):189–199

    Article  CAS  Google Scholar 

  80. Gledhill JD, Tozer DJ (2015) J Chem Phys 143(2):024104

    Article  CAS  Google Scholar 

  81. Carmona-Espindola J, Gázquez JL, Vela A, Trickey SB (2015) J Chem Phys 142(5):054105

    Article  CAS  Google Scholar 

  82. Carmona-Espíndola J, Moreno RF, Köster AM (2010) J Chem Phys 133:084102

    Article  CAS  Google Scholar 

  83. Shedge SV, Carmona-Espíndola J, Pal S, Köster AM (2010) J Phys Chem A 114:2357–2364

    Article  CAS  Google Scholar 

  84. Carmona-Espíndola J, Moreno RF, Köster AM (2012) Int J Quantum Chem 112:3461–3471

    Article  CAS  Google Scholar 

  85. Calaminici P, Carmona-Espíndola J, Geudtner G, Köster AM (2012) Int J Quantum Chem 112:3252–3255

    Article  CAS  Google Scholar 

  86. Shedge SV, Pal S, Köster AM (2012) Chem Phys Lett 552:146–150

    Article  CAS  Google Scholar 

  87. Perdew JP, Emzerhof M, Burke K (1996) J Chem Phys 105(22):9982–9985

    Article  CAS  Google Scholar 

  88. Harris J, Jones RO (1974) J Phys F 4:1170–1186

    Article  Google Scholar 

  89. Gunnarsson O, Lundqvist BI (1976) Phys Rev B 13:4274–4298

    Article  CAS  Google Scholar 

  90. Langreth DC, Perdew JP (1977) Phys Rev B 15:2884–2901

    Article  Google Scholar 

  91. Harris J (1984) Phys Rev A 29:1648–1659

    Article  CAS  Google Scholar 

  92. Becke AD (1993) J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  93. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  94. Perdew JP (1991) In: Ziesche P, Eschrig H (eds) Electronic structure of solids ‘91. Akademie, Berlin, pp 11–20

    Google Scholar 

  95. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  96. Kim K, Jordan KD (1994) J Phys Chem 98:10089–10094

    Article  CAS  Google Scholar 

  97. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  98. Becke AD (1996) J Chem Phys 104:1040–1046

    Article  CAS  Google Scholar 

  99. Görling A, Levy M (1993) Phys Rev B 47:13105–13113

    Article  Google Scholar 

  100. Görling A, Levy M (1994) Phys Rev A 50:196–204

    Article  Google Scholar 

  101. Adamo C, Barone V (1999) J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  102. Ernzerhof M, Scuseria GE (1999) J Chem Phys 110:5029–5036

    Article  CAS  Google Scholar 

  103. Adamo C, Scuseria GE, Barone V (1999) J Chem Phys 111:2889–2899

    Article  CAS  Google Scholar 

  104. Ando S, Fujigaya T, Ueda M (2002) Jpn J Appl Phys 41:L105–L108

    Article  CAS  Google Scholar 

  105. Burke K, Werschnik J, Gross EKU (2005) J Chem Phys 123:062206

    Article  CAS  Google Scholar 

  106. Jacquemin D, Perèpte EA, Scuseria GE, Ciofini I, Adamo C (2008) J Chem Theory Comput 4:123–135

    Article  CAS  Google Scholar 

  107. Li YL, Han L, Mei Y, Zhang JZH (2009) Chem Phys Lett 482:217–222

    Article  CAS  Google Scholar 

  108. Heßelmann A, Götz AW, Della Sala F, Görling A (2007) J Chem Phys 127(5):054102

    Article  CAS  Google Scholar 

  109. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (2000) J Chem Phys 112:7374–7383

    Article  CAS  Google Scholar 

  110. Ma SK, Brueckner KA (1968) Phys Rev 165(1):18–31

    Article  Google Scholar 

  111. Savin A, Flad HJ (1995) Int J Quantum Chem 56:327–332

    Article  CAS  Google Scholar 

  112. Savin A (1996) In: Seminario JM (ed) Recent developments of modern density functional theory. Elsevier, Amsterdam

  113. Savin A (1996) In: Chong DP (ed) Recent advances in density functional methods. World Scientific, Singapore

    Google Scholar 

  114. Leininger T, Stoll H, Werner HJ, Savin A (1997) Chem Phys Lett 275:151–160

    Article  CAS  Google Scholar 

  115. Likura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540–3544

    Article  CAS  Google Scholar 

  116. Toulouse J, Colonna F, Savin A (2004) Phys Rev A 70:062505

    Article  CAS  Google Scholar 

  117. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  118. Rohrdanz MA, Herbert JM (2008) J Chem Phys 129:034107

    Article  CAS  Google Scholar 

  119. Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, van Dam HJJ, Wang D, Nieplocha J, Apra E, Windus TL, de Jong WA (2010) Comput Phys Commun 181:1477–1489

    Article  CAS  Google Scholar 

  120. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) J Chem Phys 106:1063–1079

    Article  CAS  Google Scholar 

  121. Lynch BJ, Zhao Y, Truhlar DG (2003) J Phys Chem A 107:1384–1388

    Article  CAS  Google Scholar 

  122. Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364–382

    Article  CAS  Google Scholar 

  123. Parthiban S, Martin JML (2001) J Chem Phys 114:6014–6029

    Article  CAS  Google Scholar 

  124. Zhao Y, Truhlar DG (2006) J Phys Chem A 110:10478–10486

    Article  CAS  Google Scholar 

  125. Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) J Chem Phys 94:7221–7230

    Article  CAS  Google Scholar 

  126. Curtiss LA, Redfern PC, Raghavachari K, Pople JA (1998) J Chem Phys 109:42–55

    Article  CAS  Google Scholar 

  127. Zhao Y, Truhlar DG (2005) J Chem Theory Comput 1:415–432

    Article  CAS  Google Scholar 

  128. Zhao Y, Truhlar DG (2005) J Phys Chem A 109:5656–5667

    Article  CAS  Google Scholar 

  129. Lynch BJ, Zhao Y, Truhlar DG. http://t1.chem.umn.edu/db/

  130. Zhao Y, González-García N, Truhlar DG (2005) J Phys Chem A 109:2012–2018

    Article  CAS  Google Scholar 

  131. Zhao Y, Lynch BJ, Truhlar DG (2005) Phys Chem Chem Phys 7:43–52

    Article  CAS  Google Scholar 

  132. Staroverov VN, Scuseria GE, Tao JM, Perdew JP (2003) J Chem Phys 119:12129–12137

    Article  CAS  Google Scholar 

  133. David R. Lide (2002) CRC handbook of chemistry and physics, 83rd edn. CRC Press, Boca Ratón

  134. Huber K, Herzberg G (1979) Molecular spectra and molecular structure. IV Constants of diatomic molecules. Van Nostrand Reinhold, New York

    Book  Google Scholar 

  135. Martin JML (1999) Chem Phys Lett 303:399–407

    Article  CAS  Google Scholar 

  136. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120(1–3):215–241

    Article  CAS  Google Scholar 

  137. Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) J Chem Phys 120:8425–8433

    Article  CAS  Google Scholar 

  138. Herzberg G (1966) Electronic spectra and electronic structure of polyatomic molecules. Van Nostrand Reinhold, New York

    Google Scholar 

  139. Dunning TH (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  140. Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  141. Godbout N, Salahub DR, Andzelm J, Wimmer E (1992) Can J Chem 70:560–571

    Article  CAS  Google Scholar 

  142. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  143. Miura M, Aoki Y, Champagne B (2007) J Chem Phys 127:084103

    Article  CAS  Google Scholar 

  144. Nielsen ES, Jrgensen P, Oddsershede J (1980) J Chem Phys 73:6238–6246

    Article  CAS  Google Scholar 

  145. Clouthier DJ, Ramsay DA (1983) Ann Rev Phys Chem 34:31–58

    Article  CAS  Google Scholar 

  146. Ben-Shlomo SB, Kaldor U (1990) J Chem Phys 92:3680–3682

    Article  CAS  Google Scholar 

  147. Serrano-Andrés L, Merchán M, Nebot-Gil I, Lindh R, Roos BO (1993) J Chem Phys 98:3151–3162

    Article  Google Scholar 

  148. Stratmann RE, Scuseria GE, Frisch MJ (1998) J Chem Phys 109:8218–8224

    Article  CAS  Google Scholar 

  149. Matsuzawa NN, Ishitani A, Dixon DA, Uda T (2001) J Phys Chem A 105:4953–4962

    Article  CAS  Google Scholar 

  150. de Castro EVR, Jorge FE (1998) J Chem Phys 108(1):5225–5229

    Article  Google Scholar 

  151. Pantos E, Philis J, Bolovinos A (1978) J Mol Spec 72:36–43

    Article  CAS  Google Scholar 

  152. Pickett LW, Muntz M, McPherson EM (1951) J Am Chem Soc 73:4862–4865

    Article  CAS  Google Scholar 

  153. George GA, Morris GC (1968) J Mol Spectrosc 26:67–71

    Article  CAS  Google Scholar 

  154. Koch EE, Otto A, Radler K (1973) Chem Phys Lett 21:501–504

    Article  CAS  Google Scholar 

  155. Kimura K, Nagakura S (1965) Mol Phys 9:117–135

    Article  CAS  Google Scholar 

  156. Gilbert R, Sandorfy C (1971) Chem Phys Lett 9:121–124

    Article  CAS  Google Scholar 

  157. Philis J, Bolovinos A, Andritsopoulos G, Pantos E, Tsekeris P (1981) J Phys B 14:3621–3635

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Laboratorio de Supercómputo y Visualización of Universidad Autónoma Metropolitana-Iztapalapa for the use of their facilities. J.C.E. was supported in part by Conacyt and by Universidad Autónoma Metropolitana through postdoctoral fellowships. J.L.G. thanks Conacyt for Grant 155698, and A.V. thanks Conacyt for Grant 128369. S.B.T. was supported in part by U.S. NSF Grant DMR-1515307.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Gázquez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 187 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carmona-Espíndola, J., Gázquez, J.L., Vela, A. et al. Global hybrid exchange energy functional with correct asymptotic behavior of the corresponding potential. Theor Chem Acc 135, 120 (2016). https://doi.org/10.1007/s00214-016-1864-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1864-2

Keywords

Navigation