Skip to main content
Log in

Intramolecular charge transfer model in fluorescence processes

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The absorption–emission processes that characterize the fluorescent phenomena are analyzed by assuming that the changes in the ground state electronic density, when the system is promoted to the first excited state, and that the changes in the first excited state electronic density, when the system decays to a ground state with a distorted geometry, can be interpreted as intramolecular charge transfer processes. Thus, it is shown that in this context the hardness is the property that describes the absorption and the emission energies. Additionally, it is indicated that the substituent effects on the oscillator strengths may be described through the frontier molecular orbital condensed Fukui functions for the charge donating process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Parr RG, Yang WT (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  2. Chermette H (1999) J Comput Chem 20(1):129–154

    Article  CAS  Google Scholar 

  3. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103(5):1793–1873

    Article  CAS  Google Scholar 

  4. Ayers PW, Anderson JSM, Bartolotti LJ (2005) Int J Quantum Chem 101(5):520–534

    Article  CAS  Google Scholar 

  5. Gázquez JL (2008) J Mex Chem Soc 52(1):3–10

    Google Scholar 

  6. Liu SB (2009) Acta Phys-Chim Sin 25(3):590–600

    CAS  Google Scholar 

  7. Chattaraj PK (ed) (2009) Chemical reactivity theory: a density functional view. CRC Press, Boca Raton

    Google Scholar 

  8. Johnson PA, Bartolotti L, Ayers PW, Fievez T, Geerlings P (2012) In: Gatti C, Macchi P (eds) Modern charge-density analysis. Springer, Dordrecht, pp 715–764

    Google Scholar 

  9. Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68(8):3801–3807

    Article  CAS  Google Scholar 

  10. Pauling L (1932) J Am Chem Soc 54:3570–3582

    Article  CAS  Google Scholar 

  11. Mulliken RS (1934) J Chem Phys 2:782–793

    Article  CAS  Google Scholar 

  12. Iczkowski R, Margrave JL (1961) J Am Chem Soc 83(17):3547–3551

    Article  CAS  Google Scholar 

  13. Parr RG, Pearson RG (1983) J Am Chem Soc 105(26):7512–7516

    Article  CAS  Google Scholar 

  14. Parr RG, Yang WT (1984) J Am Chem Soc 106(14):4049–4050

    Article  CAS  Google Scholar 

  15. Ayers PW, Levy M (2000) Theor Chem Acc 103(3–4):353–360

    CAS  Google Scholar 

  16. Ayers PW, Parr RG (2000) J Am Chem Soc 122(9):2010–2018

    Article  CAS  Google Scholar 

  17. Morell C, Grand A, Toro-Labbe A (2005) J Phys Chem A 109(1):205–212

    Article  CAS  Google Scholar 

  18. Morell C, Grand A, Toro-Labbe A (2006) Chem Phys Lett 425(4–6):342–346

    Article  CAS  Google Scholar 

  19. De Proft F, Ayers PW, Fias S, Geerlings P (2006) J Chem Phys 125(21):214101

    Article  Google Scholar 

  20. Ayers PW, Morell C, De Proft F, Geerlings P (2007) Chem Eur J 13(29):8240–8247

    Article  CAS  Google Scholar 

  21. De Proft F, Chattaraj PK, Ayers PW, Torrent-Sucarrat M, Elango M, Subramanian V, Giri S, Geerlings P (2008) J Chem Theory Comput 4(4):595–602

    Article  Google Scholar 

  22. Morell C, Ayers PW, Grand A, Gutierrez-Oliva S, Toro-Labbe A (2008) Phys Chem Chem Phys 10(48):7239–7246

    Article  CAS  Google Scholar 

  23. Chamorro E, Pérez P, Duque M, De Proft F, Geerlings P (2008) J Chem Phys 129(6):064117

    Article  CAS  Google Scholar 

  24. Cárdenas C, Rabi N, Ayers PW, Morell C, Jaramillo P, Fuentealba P (2009) J Phys Chem A 113(30):8660–8667

    Article  Google Scholar 

  25. Araya JIM (2011) Chem Phys Lett 506(1–3):104–111

    Article  Google Scholar 

  26. Morell C, Ayers PW, Grand A, Chermette H (2011) Phys Chem Chem Phys 13(20):9601–9608

    Article  CAS  Google Scholar 

  27. Geerlings P, Ayers PW, Toro-Labbe A, Chattaraj PK, De Proft F (2012) Acc Chem Res 45(5):683–695

    Article  CAS  Google Scholar 

  28. Morell C, Gazquez JL, Vela A, Guegan F, Chermette H (2014) Phys Chem Chem Phys 16(48):26832–26842

    Article  CAS  Google Scholar 

  29. Guegan F, Mignon P, Tognetti V, Joubert L, Morell C (2014) Phys Chem Chem Phys 16(29):15558–15569

    Article  CAS  Google Scholar 

  30. Tognetti V, Morell C, Joubert L (2015) J Comput Chem 36(9):649–659

    Article  CAS  Google Scholar 

  31. Guegan F, Tognetti V, Joubert L, Chermette H, Luneau D, Morell C (2016) Phys Chem Chem Phys 18(2):982–990

    Article  CAS  Google Scholar 

  32. Tognetti V, Morell C, Ayers PW, Joubert L, Chermette H (2013) Phys Chem Chem Phys 15(34):14465–14475

    Article  CAS  Google Scholar 

  33. De Proft F, Forquet V, Ourri B, Chermette H, Geerlings P, Morell C (2015) Phys Chem Chem Phys 17(14):9359–9368

    Article  Google Scholar 

  34. Chattaraj PK, Sarkar U, Roy DR (2006) Chem Rev 106(6):2065–2091

    Article  CAS  Google Scholar 

  35. Chattaraj PK, Roy DR (2007) Chem Rev 107(9):PR46–PR74

    Article  CAS  Google Scholar 

  36. Chattaraj PK, Giri S, Duley S (2011) Chem Rev 111(2):PR43–PR75

    Article  Google Scholar 

  37. Pearson RG (1963) J Am Chem Soc 85(22):3533–3539

    Article  CAS  Google Scholar 

  38. Ayers PW (2005) J Chem Phys 122(14):141102

    Article  Google Scholar 

  39. Ayers PW, Anderson JSM, Rodriguez JI, Jawed Z (2005) Phys Chem Chem Phys 7(9):1918–1925

    Article  CAS  Google Scholar 

  40. Chattaraj PK, Ayers PW (2005) J Chem Phys 123(8):086101

    Article  Google Scholar 

  41. Ayers PW, Parr RG, Pearson RG (2006) J Chem Phys 124(19):194107

    Article  Google Scholar 

  42. Chattaraj PK, Ayers PW, Melin J (2007) Phys Chem Chem Phys 9(29):3853–3856

    Article  CAS  Google Scholar 

  43. Gázquez JL, Cedillo A, Vela A (2007) J Phys Chem A 111(10):1966–1970

    Article  Google Scholar 

  44. Parr RG, Von Szentpaly L, Liu SB (1999) J Am Chem Soc 121(9):1922–1924

    Article  CAS  Google Scholar 

  45. Moens J, Geerlings P, Roos G (2007) Chem Eur J 13(29):8174–8184

    Article  CAS  Google Scholar 

  46. Perdew JP, Parr RG, Levy M, Balduz JL (1982) Phys Rev Lett 49(23):1691–1694

    Article  CAS  Google Scholar 

  47. Yang WT, Zhang YK, Ayers PW (2000) Phys Rev Lett 84(22):5172–5175

    Article  CAS  Google Scholar 

  48. Ayers PW (2008) J Math Chem 43(1):285–303

    Article  CAS  Google Scholar 

  49. Franco-Pérez M, Ayers PW, Gázquez JL, Vela A (2015) J Chem Phys 143(24):244117

    Article  Google Scholar 

  50. Franco-Pérez M, Gázquez JL, Ayers PW, Vela A (2015) J Chem Phys 143(15):154103

    Article  Google Scholar 

  51. Grochala W, Albrecht AC, Hoffmann R (2000) J Phys Chem A 104(11):2195–2203

    Article  CAS  Google Scholar 

  52. Ayers PW, Parr RG (2000) J Phys Chem A 104(11):2211–2220

    Article  CAS  Google Scholar 

  53. Morell C, Labet V, Grand A, Ayers PW, De Proft F, Geerlings P, Chermette H (2009) J Chem Theory Comput 5(9):2274–2283

    Article  CAS  Google Scholar 

  54. Atkins PW, Friedmann RS (1997) Molecular quantum mechanics. Oxford University Press, Oxford

    Google Scholar 

  55. Yang WT, Mortier WJ (1986) J Am Chem Soc 108(19):5708–5711

    Article  CAS  Google Scholar 

  56. Bultinck P, Fias S, Van Alsenoy C, Ayers PW, Carbo-Dorca R (2007) J Chem Phys 127(3):034102

    Article  Google Scholar 

  57. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc, Wallingford, CT

    Google Scholar 

  58. Adamo C, Barone V (1999) J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  59. Adamo C, Scuseria GE, Barone V (1999) J Chem Phys 111:2889–2899

    Article  CAS  Google Scholar 

  60. Ernzerhof M, Scuseria GE (1999) J Chem Phys 110:5029–5036

    Article  CAS  Google Scholar 

  61. Dunning TH Jr (1989) J Chem Phys 90(2):1007–1023

    Article  CAS  Google Scholar 

  62. Wilson AK, Woon DE, Peterson KA, Dunning TH (1999) J Chem Phys 110(16):7667–7676

    Article  CAS  Google Scholar 

  63. Murata C, Masuda T, Kamochi Y, Todoroki K, Yoshida H, Nohta H, Yamaguchi M, Takadate A (2005) Chem Pharm Bull 53(7):750–758

    Article  CAS  Google Scholar 

  64. Bauernschmitt R, Ahlrichs R (1996) Chem Phys Lett 256(4–5):454–464

    Article  CAS  Google Scholar 

  65. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) J Chem Phys 108(11):4439–4449

    Article  CAS  Google Scholar 

  66. Stratmann RE, Scuseria GE, Frisch MJ (1998) J Chem Phys 109(19):8218–8224

    Article  CAS  Google Scholar 

  67. Van Caillie C, Amos RD (1999) Chem Phys Lett 308(3–4):249–255

    Article  Google Scholar 

  68. Van Caillie C, Amos RD (2000) Chem Phys Lett 317(1–2):159–164

    Article  Google Scholar 

  69. Furche F, Ahlrichs R (2002) J Chem Phys 117(16):7433–7447

    Article  CAS  Google Scholar 

  70. Scalmani G, Frisch MJ, Mennucci B, Tomasi J, Cammi R, Barone V (2006) J Chem Phys 124(9):094107

    Article  Google Scholar 

  71. Contreras RR, Fuentealba P, Galván M, Pérez P (1999) Chem Phys Lett 304(5–6):405–413

    Article  CAS  Google Scholar 

  72. De Proft F, Van Alsenoy C, Peeters A, Langenaeker W, Geerlings P (2002) J Comput Chem 23(12):1198–1209

    Article  Google Scholar 

  73. Filippi C, Umrigar CJ, Gonze X (1997) J Chem Phys 107(23):9994–10002

    Article  CAS  Google Scholar 

  74. Savin A, Umrigar CJ, Gonze X (1998) Chem Phys Lett 288(2–4):391–395

    Article  CAS  Google Scholar 

  75. Ayers PW, Morrison RC, Parr RG (2005) Mol Phys 103(15–16):2061–2072

    Article  CAS  Google Scholar 

  76. Baerends EJ, Gritsenko OV, van Meer R (2013) Phys Chem Chem Phys 15(39):16408–16425

    Article  CAS  Google Scholar 

  77. van Meer R, Gritsenko OV, Baerends EJ (2014) J Chem Theory Comput 10(10):4432–4441

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Laboratorio de Supercómputo y Visualización of Universidad Autónoma Metropolitana-Iztapalapa for the use of their facilities. JCE was supported in part by Conacyt and by Universidad Autónoma Metropolitana through postdoctoral fellowships. JLG thanks Conacyt for Grants 155698 and 237045. We wish to dedicate this work to Alberto Vela, on the occasion of his 60th anniversary. JLG would like to recognize Alberto for being a good student, a good scientist, but mainly a good person and more than a good friend, a brother.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alejandro Piedras or José L. Gázquez.

Additional information

Published as part of the special collection of articles “Festschrift in honour of A. Vela”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piedras, A., Gómez, B., Carmona-Espíndola, J. et al. Intramolecular charge transfer model in fluorescence processes. Theor Chem Acc 135, 243 (2016). https://doi.org/10.1007/s00214-016-1997-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1997-3

Keywords

Navigation