Skip to main content
Log in

Molecular mechanics of caffeic acid in food profilin allergens

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Vegetable profilins are considered potent allergens for their cross-reactivity as a result of the high sequence identity. Nowadays an attractive attention is focused to find new ligands to inhibit the active site of allergenic profilins. Some studies have shown that caffeic acid may have a certain inhibitory effect on some allergens. For this reason, we studied caffeic acid as an important ligand and its interaction between seven vegetable profilins. We applied molecular dynamic simulations methods and binding free energy analysis by MM–PBSA. We found that caffeic acid had a favorable behavior, and their coupling was mediated by hydrophobic interactions. Furthermore, the analysis of epitopes showed an important contribution of the secondary structure after docking simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sicherer SH, Allen K, Lack G, Taylor SL, Donovan SM, Oria M (2017) Critical issues in food allergy: a national academies consensus report. Pediatrics 140(2):e20170194

    Article  PubMed  Google Scholar 

  2. Sicherer SH, Sampson HA (2014) Food allergy: epidemiology, pathogenesis, diagnosis, and treatment. J Allergy Clin Immunol 133(2):291–307. e295

    Article  PubMed  CAS  Google Scholar 

  3. Koeberl M, Clarke D, Lopata AL (2014) Next generation of food allergen quantification using mass spectrometric systems. J Proteome Res 13(8):3499–3509

    Article  PubMed  CAS  Google Scholar 

  4. Valenta R, Duchêne M, Vrtala S, Valent P, Sillaber C, Ferreira F, Tejkl M, Hirschwehr R, Ebner C, Kraft D (1992) Profilin, a novel plant pan-allergen. Int Arch Allergy Immunol 99(2–4):271–273

    Article  CAS  PubMed  Google Scholar 

  5. Carlsson L, Nyström L-E, Sundkvist I, Markey F, Lindberg U (1977) Actin polymerizability is influenced by profilin, a low molecular weight protein in non-muscle cells. J Mol Biol 115(3):465–483

    Article  PubMed  CAS  Google Scholar 

  6. Carlsson L, Nyström L-E, Lindberg U, Kannan K, Cid-Dresdner H, Lövgren S, Jörnvall H (1976) Crystallization of a non-muscle actin. J Mol Biol 105(3):353–366

    Article  PubMed  CAS  Google Scholar 

  7. Aalberse R, Akkerdaas J, Van Ree R (2001) Cross-reactivity of IgE antibodies to allergens. Allergy 56(6):478–490

    Article  PubMed  CAS  Google Scholar 

  8. Creighton TE (1993) Proteins: structures and molecular properties. Macmillan, New York

    Google Scholar 

  9. Chung S-Y, Reed S (2014) Reducing food allergy: is there promise for food applications? Curr Pharm Des 20(6):924–930

    Article  PubMed  CAS  Google Scholar 

  10. Cuadrado C, Cabanillas B, Pedrosa MM, Varela A, Guillamón E, Muzquiz M, Crespo JF, Rodriguez J, Burbano C (2009) Influence of thermal processing on IgE reactivity to lentil and chickpea proteins. Mol Nutr Food Res 53(11):1462–1468

    Article  PubMed  CAS  Google Scholar 

  11. Kumar S, Verma AK, Das M, Dwivedi PD (2012) Molecular mechanisms of IgE mediated food allergy. Int Immunopharmacol 13(4):432–439

    Article  PubMed  CAS  Google Scholar 

  12. Koppelman SJ, Hefle SL, Taylor SL, De Jong GA (2010) Digestion of peanut allergens Ara h 1, Ara h 2, Ara h 3, and Ara h 6: a comparative in vitro study and partial characterization of digestion-resistant peptides. Mol Nutr Food Res 54(12):1711–1721

    Article  PubMed  CAS  Google Scholar 

  13. Johnson PE, Van der Plancken I, Balasa A, Husband FA, Grauwet T, Hendrickx M, Knorr D, Mills E, Mackie AR (2010) High pressure, thermal and pulsed electric-field-induced structural changes in selected food allergens. Mol Nutr Food Res 54(12):1701–1710

    Article  PubMed  CAS  Google Scholar 

  14. Chung S-Y, Mattison CP, Reed S, Wasserman RL, Desormeaux WA (2015) Treatment with oleic acid reduces IgE binding to peanut and cashew allergens. Food Chem 180:295–300

    Article  PubMed  CAS  Google Scholar 

  15. Chung S-Y, Kato Y, Champagne ET (2005) Polyphenol oxidase/caffeic acid may reduce the allergenic properties of peanut allergens. J Sci Food Agric 85(15):2631–2637. https://doi.org/10.1002/jsfa.2302

    Article  CAS  Google Scholar 

  16. Kang H, Wang Z, Zhang W, Li J, Zhang S (2016) Physico-chemical properties improvement of soy protein isolate films through caffeic acid incorporation and tri-functional aziridine hybridization. Food Hydrocoll 61:923–932. https://doi.org/10.1016/j.foodhyd.2016.07.009

    Article  CAS  Google Scholar 

  17. Ozdal T, Capanoglu E, Altay F (2013) A review on protein–phenolic interactions and associated changes. Food Res Int 51(2):954–970. https://doi.org/10.1016/j.foodres.2013.02.009

    Article  CAS  Google Scholar 

  18. Gruber P, Vieths S, Wangorsch A, Nerkamp J, Hofmann T (2004) Maillard reaction and enzymatic browning affect the allergenicity of Pru av 1, the major allergen from cherry (Prunus avium). J Agric Food Chem 52(12):4002–4007

    Article  PubMed  CAS  Google Scholar 

  19. Zhou Y, Wang J-S, Yang X-J, Lin D-H, Gao Y-F, Su Y-J, Yang S, Zhang Y-J, Zheng J-J (2013) Peanut allergy, allergen composition, and methods of reducing allergenicity: a review. Int J Food Sci 2013:909140

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chung S-Y, Reed S (2012) Removing peanut allergens by tannic acid. Food Chem 134(3):1468–1473

    Article  PubMed  CAS  Google Scholar 

  21. Cherkaoui S, Ben-Shoshan M, Alizadehfar R, Asai Y, Chan E, Cheuk S, Shand G, St-Pierre Y, Harada L, Allen M (2015) Accidental exposures to peanut in a large cohort of Canadian children with peanut allergy. Clin Transl Allergy 5(1):16

    Article  PubMed  PubMed Central  Google Scholar 

  22. Geudtner G, Calaminici P, Carmona-Espíndola J, del Campo JM, Domínguez-Soria VD, Moreno RF, Gamboa GU, Goursot A, Köster AM, Reveles JU (2012) DeMon2k. Wiley Interdiscip Rev Comput Mol Sci 2(4):548–555

    Article  CAS  Google Scholar 

  23. Yang W, Ayers PW (2003) Density-functional theory. Computational medicinal chemistry for drug discovery. CRC Press, Boca Raton, pp 103–132

    Google Scholar 

  24. Koster AM, Geudtner G, Alvarez-Ibarra A, Calaminici P, Casida ME, Carmona-Espindola J, Dominguez V, Flores-Moreno R, Gamboa RU, Goursot A, Heine T, Ipatov A, de la Lande A, Janetzko F, del Campo JM, Mejia-Rodriguez D, Reveles JU, Vasquez-Perez J, Vela A, Zuniga-Gutierrez B, Salahub DR (2016) deMon2k, version 4. The deMon developers, Cinvestav, Mexico City

  25. Webb B, Sali A (2017) Protein structure modeling with MODELLER. Functional genomics. Springer, Berlin, pp 39–54

    Chapter  Google Scholar 

  26. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25

    Article  Google Scholar 

  27. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucl Acids Res 33(Suppl_2):W363–W367

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Hussein HA, Borrel A, Geneix C, Petitjean M, Regad L, Camproux A-C (2015) PockDrug-server: a new web server for predicting pocket druggability on holo and apo proteins. Nucl Acids Res 43(W1):W436–W442

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  PubMed  CAS  Google Scholar 

  30. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  PubMed  CAS  Google Scholar 

  31. Sankian M, Varasteh A, Pazouki N, Mahmoudi M (2005) Sequence homology: a poor predictive value for profilins cross-reactivity. Clin Mol Allergy 3(1):13

    Article  PubMed  PubMed Central  Google Scholar 

  32. Larsson P, Wallner B, Lindahl E, Elofsson A (2008) Using multiple templates to improve quality of homology models in automated homology modeling. Protein Sci 17(6):990–1002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Fedorov AA, Ball T, Mahoney NM, Valenta R, Almo SC (1997) The molecular basis for allergen cross-reactivity: crystal structure and IgE-epitope mapping of birch pollen profilin. Structure 5(1):33–45

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported partially by funds of the Universidad Católica de Santa María (Resolution No. 20179) and by Fondo Nacional de Desarrollo Científico y Tecnológico—FONDECYT Grant No. 138-2015-Perú.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruna L. Barazorda-Ccahuana.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles “CHITEL 2017—Paris–France”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2391 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barazorda-Ccahuana, H.L., Valencia, D.E. & Gómez, B. Molecular mechanics of caffeic acid in food profilin allergens. Theor Chem Acc 138, 19 (2019). https://doi.org/10.1007/s00214-018-2404-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2404-z

Keywords

Navigation