Skip to main content

Advertisement

Log in

Functional multineuron calcium imaging for systems pharmacology

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Functional multineuron calcium imaging (fMCI) is a large-scale technique used to access brain function on a single-neuron scale. It detects the activity of individual neurons by imaging action potential-evoked transient calcium influxes into their cell bodies. fMCI has recently been used as a high-throughput research tool to examine how neuronal activity is altered in animal models of brain diseases, for example stroke, Alzheimer’s disease, and epilepsy, and to estimate how pharmacological agents act on normal and abnormal states of neuronal networks. It offers unique opportunities to discover the mechanisms underlying neurological disorders and new therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shoham D, Glaser DE, Arieli A, Kenet T, Wijnbergen C, Toledo Y, Hildesheim R, Grinvald A (1999) Neuron 24:791–802

    Article  CAS  Google Scholar 

  2. Raichle ME (1998) Proc Natl Acad Sci USA 95:765–772

    Article  CAS  Google Scholar 

  3. Orbach HS, Cohen LB, Grinvald A (1985) J Neurosci 5:1886–1895

    CAS  Google Scholar 

  4. Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN (1986) Nature 324:361–364

    Article  CAS  Google Scholar 

  5. Logothetis N, Merkle H, Augath M, Trinath T, Ugurbil K (2002) Neuron 35:227–242

    Article  CAS  Google Scholar 

  6. Sasaki T, Matsuki N, Ikegaya Y (2007) J Neurosci 27:517–528

    Article  CAS  Google Scholar 

  7. Sasaki T, Takahashi N, Matsuki N, Ikegaya Y (2008) J Neurophysiol 100:1668–1676

    Article  CAS  Google Scholar 

  8. Nimmerjahn A, Kirchhoff F, Kerr JN, Helmchen F (2004) Nat Methods 1:31–37

    Article  CAS  Google Scholar 

  9. Yuste R, Katz LC (1991) Neuron 6:333–344

    Article  CAS  Google Scholar 

  10. Miyawaki A (2005) Neuron 48:189–199

    Article  CAS  Google Scholar 

  11. Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, Petreanu L, Akerboom J, McKinney SA, Schreiter ER, Bargmann CI, Jayaraman V, Svoboda K, Looger LL (2009) Nat Methods 6:875–881

    Article  CAS  Google Scholar 

  12. Dreosti E, Odermatt B, Dorostkar MM, Lagnado L (2009) Nat Methods 6:883–889

    Article  CAS  Google Scholar 

  13. Mank M, Santos AF, Direnberger S, Mrsic-Flogel TD, Hofer SB, Stein V, Hendel T, Reiff DF, Levelt C, Borst A, Bonhoeffer T, Hübener M, Griesbeck O (2008) Nat Methods 5:805–811

    Article  CAS  Google Scholar 

  14. Bonifazi P, Goldin M, Picardo MA, Jorquera I, Cattani A, Bianconi G, Represa A, Ben Ari Y, Cossart R (2009) Science 326:1419–1424

    Article  CAS  Google Scholar 

  15. Namiki S, Matsuki N, Ikegaya Y (2009) Nat Proceedings 2009.2893.1

  16. Buzsaki G (2004) Nat Neurosci 7:446–451

    Article  CAS  Google Scholar 

  17. Cossart R, Aronov D, Yuste R (2003) Nature 423:283–288

    Article  CAS  Google Scholar 

  18. Ikegaya Y, Aaron G, Cossart R, Aronov D, Lampl I, Ferster D, Yuste R (2004) Science 304:559–564

    Article  CAS  Google Scholar 

  19. MacLean JN, Watson BO, Aaron GB, Yuste R (2005) Neuron 48:811–823

    Article  CAS  Google Scholar 

  20. Denk W, Strickler JH, Webb WW (1990) Science 248:73–76

    Article  CAS  Google Scholar 

  21. Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) Proc Natl Acad Sci USA 100:7319–7324

    Article  CAS  Google Scholar 

  22. Ohki K, Chung S, Ch'ng YH, Kara P, Reid RC (2005) Nature 433:597–603

    Article  CAS  Google Scholar 

  23. Ohki K, Chung S, Kara P, Hubener M, Bonhoeffer T, Reid RC (2006) Nature 442:925–928

    Article  CAS  Google Scholar 

  24. Nagayama S, Zeng S, Xiong W, Fletcher ML, Masurkar AV, Davis DJ, Pieribone VA, Chen WR (2007) Neuron 53:789–803

    Article  CAS  Google Scholar 

  25. Kerr JN, de Kock CP, Greenberg DS, Bruno RM, Sakmann B, Helmchen F (2007) J Neurosci 27:13316–13328

    Article  CAS  Google Scholar 

  26. Helmchen F, Fee MS, Tank DW, Denk W (2001) Neuron 31:903–912

    Article  CAS  Google Scholar 

  27. Engelbrecht CJ, Johnston RS, Seibel EJ, Helmchen F (2008) Opt Exp 16:5556–5564

    Article  CAS  Google Scholar 

  28. Dombeck DA, Khabbaz AN, Collman F, Adelman TL, Tank DW (2007) Neuron 56:43–57

    Article  CAS  Google Scholar 

  29. Harvey CD, Collman F, Dombeck DA, Tank DW (2009) Nature 461:941–946

    Article  CAS  Google Scholar 

  30. Kerr JN, Greenberg D, Helmchen F (2005) Proc Natl Acad Sci USA 102:14063–14068

    Article  CAS  Google Scholar 

  31. Ramdya P, Reiter B, Engert F (2006) J Neurosci Methods 157:230–237

    Article  CAS  Google Scholar 

  32. Greenberg DS, Houweling AR, Kerr JN (2008) Nat Neurosci 11:749–751

    Article  CAS  Google Scholar 

  33. Yaksi E, Friedrich RW (2006) Nat Methods 3:377–383

    Article  CAS  Google Scholar 

  34. Peterlin ZA, Kozloski J, Mao BQ, Tsiola A, Yuste R (2000) Proc Natl Acad Sci USA 97:3619–3624

    Article  CAS  Google Scholar 

  35. Aaron G, Yuste R (2006) Synapse 60:437–440

    Article  CAS  Google Scholar 

  36. Sasaki T, Minamisawa G, Takahashi N, Matsuki N, Ikegaya Y (2009) J Neurophysiol 102:636–643

    Article  CAS  Google Scholar 

  37. Nikolenko V, Poskanzer KE, Yuste R (2007) Nat Methods 4:943–950

    Article  CAS  Google Scholar 

  38. Mizunuma M, Takahashi N, Usami A, Matsuki N, Ikegaya Y (2009) J Pharmacol Sci 110:117–121

    Article  CAS  Google Scholar 

  39. Tauskela JS, Fang H, Hewitt M, Brunette E, Ahuja T, Thivierge JP, Comas T, Mealing GA (2008) J Biol Chem 283:34667–34676

    Article  CAS  Google Scholar 

  40. Winship IR, Murphy TH (2008) J Neurosci 28:6592–6606

    Article  CAS  Google Scholar 

  41. Gotz J, Ittner LM (2008) Nat Rev Neurosci 9:532–544

    Article  Google Scholar 

  42. Eichhoff G, Busche MA, Garaschuk O (2008) Eur J Nucl Med Mol Imaging 35(Suppl 1):S99–S106

    Article  Google Scholar 

  43. Busche MA, Eichhoff G, Adelsberger H, Abramowski D, Wiederhold KH, Haass C, Staufenbiel M, Konnerth A, Garaschuk O (2008) Science 321:1686–1689

    Article  CAS  Google Scholar 

  44. Kuchibhotla KV, Lattarulo CR, Hyman BT, Bacskai BJ (2009) Science 323:1211–1215

    Article  CAS  Google Scholar 

  45. Badea T, Goldberg J, Mao B, Yuste R (2001) J Neurobiol 48:215–227

    Article  CAS  Google Scholar 

  46. Sasaki T, Kimura K, Tsukamoto M, Matsuki N, Ikegaya Y (2006) J Physiol 574:195–208

    Article  CAS  Google Scholar 

  47. Trevelyan AJ, Sussillo D, Yuste R (2007) J Neurosci 27:3383–3387

    Article  CAS  Google Scholar 

  48. Tian GF, Azmi H, Takano T, Xu Q, Peng W, Lin J, Oberheim N, Lou N, Wang X, Zielke HR, Kang J, Nedergaard M (2005) Nat Med 11:973–981

    CAS  Google Scholar 

  49. Usami A, Sasaki T, Satoh N, Akiba T, Yokoshima S, Fukuyama T, Yamatsugu K, Kanai M, Shibasaki M, Matsuki N, Ikegaya Y (2008) J Pharmacol Sci 106:659–662

    Article  CAS  Google Scholar 

  50. Helmchen F, Denk W (2005) Nat Methods 2:932–940

    Article  CAS  Google Scholar 

  51. Kuga N, Hirata T, Sakai I, Tanikawa Y, Chiou HY, Kitanishi T, Matsuki N, Ikegaya Y (2009) J Physiol 587:745–752

    Article  CAS  Google Scholar 

  52. Levene MJ, Dombeck DA, Kasischke KA, Molloy RP, Webb WW (2004) J Neurophysiol 91:1908–1912

    Article  Google Scholar 

  53. Barretto RP, Messerschmidt B, Schnitzer MJ (2009) Nat Methods 6:511–512

    Article  CAS  Google Scholar 

  54. Ikegaya Y, Le Bon-Jego M, Yuste R (2005) Neurosci Res 52:132–138

    Article  CAS  Google Scholar 

  55. Takahashi N, Sasaki T, Usami A, Matsuki N, Ikegaya Y (2007) Neurosci Res 58:219–225

    Article  CAS  Google Scholar 

  56. Nevian T, Helmchen F (2007) Pflugers Arch 454:675–688

    Article  CAS  Google Scholar 

  57. Crepel V, Aronov D, Jorquera I, Represa A, Ben-Ari Y, Cossart R (2007) Neuron 54:105–120

    Article  CAS  Google Scholar 

  58. Ozden I, Lee HM, Sullivan MR, Wang SS-H (2008) J Neurophysiol 100:495–503

    Article  Google Scholar 

  59. Mukamel EA, Nimmerjahn A, Schnitzer MJ (2009) Neuron 63:747–760

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Ikegaya.

Appendices

Appendix

Publication list of methods and tools for details

Loading procedure for calcium indicators

In vitro fMCI

(Bath application) Ikegaya et al, 2005 [54]; Takahashi et al., 2007 [55]

(Pressure injection) Stosiek et al., 2003 [21]

In vivo fMCI

(Pressure injection) Stosiek et al., 2003 [21]; Nimmejahn et al., 2004 [8]; Ohki et al, 2005 [22]

(Electroporation) Nevian and Helmchem, 2007 [56]; Nagayama et al., 2007 [24]

fMCI data analysis

Cell identification

(Fluorescence contour) Crepel et al., 2007 [57]

(Correlation based) Ozden et al. 2008 [58]

(Spatio-temporal independent component analysis) Mukamel et al., 2009 [59]

Extraction of calcium signals (spike detection)

(Temporal deconvolution) Yaksi and Friedrich, 2006 [33]

(Template matching) Kerr et al., 2005 [30]; Greenberg et al., 2008 [32]

(Machine learning) Sasaki et al., 2008 [7]

(Spatio-temporal independent component analysis) Mukamel et al., 2009 [59]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, N., Takahara, Y., Ishikawa, D. et al. Functional multineuron calcium imaging for systems pharmacology. Anal Bioanal Chem 398, 211–218 (2010). https://doi.org/10.1007/s00216-010-3740-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3740-6

Keywords

Navigation