Skip to main content
Log in

Use of surface plasmon resonance in the binding study of vitamin D, metabolites and analogues with vitamin D binding protein

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Vitamin D3 and its metabolites are lipophilic molecules with low aqueous solubility and must be transported bound to plasma carrier proteins, primarily to vitamin D binding protein (DBP). The biological functions of vitamin D3 metabolites are intimately dependent on the protein, hence the importance of determining their affinity for DBP. In this study, we developed a novel procedure for measuring the kinetic and equilibrium constants of human-DBP with vitamin D3 and three metabolites: 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], 25-hydroxyvitamin D3 (25OHD3) and 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] by surface plasmon resonance (SPR). At the same time, five different analogues, synthetized in our laboratory, were evaluated in order to compare the affinity values with the metabolites. Real-time SPR measurements showed that 25OHD3 and 24,25(OH)2D3 had higher affinity (0.3 μM) than 1,25(OH)2D3 (5 μM), with the higher affinity of 25OHD3 and 24,25(OH)2D3 due to dissociation constants 1 order of magnitude slower. In the case of the analogues, the affinity values were lower, with 1-hydroxy-25-nitro-vitamin D3 (NO2-446), structurally closer to 1,25(OH)2D3, showing the highest value with a K D of 50 μM. (24R)-1,25-dihydroxyvitamin-24-buthyl-28-norvitamin D2 (Bu-471) and (24R)-1,25-dihydroxyvitamin-24-phenyl-28-norvitamin D2 (Ph-491), structurally similar, had affinities of 180 and 170 μM, respectively. (22R,23E)-1-hydroxy-22-ethenyl-25-methoxy-23-dehydrovitamin D3 (MeO-455) and 1-hydroxy-20(R)-[5(S)-(2,2-dimethyltetrahydropyran-5-yl)]-22,23-dinor vitamin D3 (Oxan-429) had affinities of 310 and 100 μM, respectively. The binding of the metabolites and analogues was reversible allowing the rapid capture of data for replicates. The kinetic and equilibrium data for both the metabolites and the analogues fitted to the Langmuir model describing a 1:1 interaction.

Label-free, real time binding study between vitamin D binding protein immmobilized on the surface of a SPR sensor chip and the vitamin D, metabolites and analogues passed over it as analytes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bikle DD, Gee E, Halloran B, Kowalski MA, Ryzen E, Haddad JG. Assessment of the free fraction of 25-hydroxyvitamin D in serum and its regulation by albumin and the vitamin D-binding protein. J Clin Endocrinol Metab. 1986;63:954–9.

    Article  CAS  Google Scholar 

  2. Bikle DD, Siiteri PK, Ryzen E, Haddad JG. Serum protein binding of 1,25-dihydroxyvitamin D: a reevaluation by direct measurement of free metabolite levels. J Clin Endocrinol Metab. 1985;61:969–75.

    Article  CAS  Google Scholar 

  3. Gomme PT, Bertolini J. Therapeutic potential of vitamin D-binding protein. Trends Biotechnol. 2004;22:340–5.

    Article  CAS  Google Scholar 

  4. Schmid A, Walther B. Natural vitamin D content in animal products. Adv Nutr. 2013;4:453–6.

    Article  CAS  Google Scholar 

  5. Sintov AC, Yarmolinsky L, Dahan A, Ben-Shabat S. Pharmacological effects of vitamin D and its analogs: recent developments. Drug Discov Today. 2014;19:1769–74.

    Article  CAS  Google Scholar 

  6. Swamy N, Head JF, Weitz D, Ray R. Biochemical and preliminary crystallographic characterization of the vitamin D sterol-and actin-binding by human vitamin D-binding protein. Arch Biochem Biophys. 2002;402:14–23.

    Article  CAS  Google Scholar 

  7. Verboven C, Rabijns A, De Maeyer M, Van Baelen H, Bouillon R, De Ranter C. A structural basis for the unique binding features of the human vitamin D-binding protein. Nat Struct Biol. 2002;9:131–6.

    Article  CAS  Google Scholar 

  8. Yamamoto K. Vitamin D, and related proteins, CYP, DBP and VDR; from the viewpoint of structural life science. Vitamins. 2013;87:669–77.

    CAS  Google Scholar 

  9. Swamy N, Dutta A, Ray R. Roles of the structure and orientation of ligands and ligand mimics inside the ligand-binding pocket of the vitamin D-binding protein. Biochemistry. 1997;36:7432–6.

    Article  CAS  Google Scholar 

  10. White P, Cooke N. The multifunctional properties and characteristics of vitamin D-binding protein. Trends Endocrinol Metab. 2000;11:320–7.

    Article  CAS  Google Scholar 

  11. Safadi FF, Thornton P, Magiera H, Hollis BW, Gentile M, Haddad JG, et al. Osteopathy and resistance to vitamin D toxicity in mice null for vitamin D binding protein. J Clin Invest. 1999;103:239–51.

    Article  CAS  Google Scholar 

  12. Ray R. Molecular recognition in vitamin D-binding protein. Proc Soc Exp Biol Med. 1996;212:305–12.

    Article  CAS  Google Scholar 

  13. Verboven CC, De Bondt HL, De Ranter C, Bouillon R, Van Baelen H. Crystallization and X-ray investigation of vitamin D-binding protein from human serum. Identification of the crystal content. J Steroid Biochem Mol Biol. 1995;54:11–4.

    Article  CAS  Google Scholar 

  14. Youssef DA, Miller CWT, El-Abbassi AM, Cutchins DC, Cutchins C, Grant WB, et al. Antimicrobial implications of vitamin D. Derm Endocrinol. 2011;3:220–9.

    Article  CAS  Google Scholar 

  15. Bouillon R, Okamura WH, Norman AW. Structure-function relationships in the vitamin D endocrine system. Endocr Rev. 1995;16:200–57.

    CAS  Google Scholar 

  16. Leyssens C, Verlinden L, Verstuyf A. The future of vitamin D analogs. Genome-wide view physiol vitamin D. 2014;5:122.

    Google Scholar 

  17. Jones G, Vitamin D. Analogs. Rheum Dis Clin N Am. 2012;38:207–32.

    Article  Google Scholar 

  18. Sherman M, Yu R, Engle D, Ding N, Atkins A, Tiriac H, et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell. 2014;159:80–93.

    Article  CAS  Google Scholar 

  19. Gopinath SCB. Biosensing applications of surface plasmon resonance-based Biacore technology. Sensors Actuators B Chem. 2010;50:722–33.

    Article  Google Scholar 

  20. Liu X, Sun Y, Song D, Zhang Q, Tian Y, Zhang H. Enhanced optical immuosensor based on surface plasmon resonance for determination of transferrin. Talanta. 2006;68:1026–31.

    Article  CAS  Google Scholar 

  21. Olaru A, Bala C, Jaffrezic-Renault N, Aboul-Enein HY. Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis. Crit Rev Anal Chem. 2015;45:97–105.

    Article  CAS  Google Scholar 

  22. Xia X, Zun-Zhong Y, Jian W, Yi-Bin Y. Application and research development of surface plasmon resonance-based immunosensors for protein detection. Fenxi Huaxue Chin J Anal Chem. 2010;38:1052–9.

    Article  Google Scholar 

  23. Huber W, Mueller F. Biomolecular interaction analysis in drug discovery using surface plasmon resonance technology. Curr Pharm Des. 2006;12:3999–4021.

    Article  CAS  Google Scholar 

  24. Karlsson R. SPR for molecular interaction analysis: a review of emerging application areas. J Mol Recogn. 2004;17:151–161

  25. Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev. 2008;108:462–93.

    Article  CAS  Google Scholar 

  26. Nguyen HH, Park J, Kang S, Kim M. Surface plasmon resonance: a versatile technique for biosensor applications. Sensors. 2015;15:10481–510.

    Article  CAS  Google Scholar 

  27. Esaki K. Methods for detecting binding of low-molecular-weight compound and its binding partner molecule. 2004.

  28. Pritchard D, Preston L, Lawlor, M. Binding molecule for DPB and method for measuring vitamin D. 2012.

  29. Carlucci L, Favero G, Tortolini C, Di Fusco M, Romagnoli E, Minisola S, et al. Several approaches for vitamin D determination by surface plasmon resonance and electrochemical affinity biosensors. Biosens Bioelectron. 2015;40:350–5.

    Article  Google Scholar 

  30. Pasquali M, Tartaglione L, Rotondi S, Leonangeli C, Mazzaferro S. Further vitamin D analogs. Curr Vasc Pharmacol. 2014;12:329–38.

    Article  CAS  Google Scholar 

  31. Fall Y, Vitale C, Mouriño A. An efficient synthesis of the 25-hydroxy Windaus–Grundmann ketone. Tetrahedron Lett. 2000;41:7337–40.

    Article  CAS  Google Scholar 

  32. Torneiro M, Fall Y, Castedo L, Mouriño A. A short, efficient copper-mediated synthesis of 1α, 25-dihydroxyvitamin D2 (1α, 25-dihydroxyergocalciferol) and C-24 analogs1, 2. J Org Chem. 1997;62:6344–52.

    Article  CAS  Google Scholar 

  33. Rivadulla ML, Pérez-García X, Pérez M, Gómez G, Fall Y. Pd-allylic substitution mediated synthesis of 25-amino vitamin D3 derivatives. Tetrahedron Lett. 2013;54:3164–6.

    Article  CAS  Google Scholar 

  34. Fall Y, Fernandez C, Vitale C, Mouriño A. Stereoselective synthesis of vitamin D3 analogues with cyclic side chains. Tetrahedron Lett. 2000;41:7323–6.

    Article  CAS  Google Scholar 

  35. Cohavi O, Tobi D, Schreiber G. Docking of antizyme to ornithine decarboxylase and antizyme inhibitor using experimental mutant and double-mutant cycle data. J Mol Biol. 2009;390:503–15.

    Article  CAS  Google Scholar 

  36. Bravman T, Bronner V, Lavie K, Notcovich A, Papalia GA, Myszka DG. Exploring “one-shot” kinetics and small molecule analysis using the ProteOn XPR36 array biosensor. Anal Biochem. 2006;358:281–8.

    Article  CAS  Google Scholar 

  37. Jones G. Pharmacokinetics of vitamin D toxicity. Am J Clin Nutr. 2008;88:582S–6S.

    CAS  Google Scholar 

  38. Chun RF, Peercy BE, Orwoll ES, Nielson CM, Adams JS, Hewison M. Vitamin D and DBP: the free hormone hypothesis revisited. J Steroid Biochem Mol Biol. 2014;144, Part A:132-137.

  39. Teegarden D, Meredith SC, Sitrin MD. Determination of the affinity of vitamin D metabolites to serum vitamin D binding protein using assay employing lipid-coated polystyrene beads. Anal Biochem. 1991;199:293–7.

    Article  CAS  Google Scholar 

  40. Shankaran DR, Gobi KV, Miura N. Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensors Actuators B Chem. 2007;121:158–77.

    Article  CAS  Google Scholar 

  41. Nilsson SF, Östberg L, Peterson PA. Binding of vitamin D to its human carrier plasma protein. Biochem Biophys Res Commun. 1972;46:1380–7.

    Article  CAS  Google Scholar 

  42. Kawakami M, Imawari M, Goodman DS. Quantative studies of the interactions of cholecalciferol (vitamin D3) and its metabolites with different genetic variants of the serum binding protein for these sterols. Biochem J. 1979;179:413–23.

    Article  CAS  Google Scholar 

  43. Haddad Jr JG, Walgate J. 25 Hydroxyvitamin D transport in human plasma. Isolation and partial characterization of calcifidiol binding protein. J Biol Chem. 1976;251:4803–9.

    CAS  Google Scholar 

  44. Vieth R. Simple method for determining specific binding capacity of vitamin D-binding protein and its use to calculate the concentration of “free” 1,25-dihydroxyvitamin D. Clin Chem. 1994;40:435–41.

    CAS  Google Scholar 

  45. van Etten E, Decallonne B, Verlinden L, Verstuyf A, Bouillon R, Mathieu C. Analogs of 1α, 25‐dihydroxyvitamin D3 as pluripotent immunomodulators. J Cell Biochem. 2003;88:223–6.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Dishman Netherlands BV for the gift of some starting materials. Pilar Canoa acknowledge the financial support of Celta Ingenieros, S.L. We would also like to thank the following organizations and individuals: the proteomic service of CACTI, University of Vigo, for SPR facilities and Carlos Eugenio Pérez Lara for his help with the preparation of Fig. 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar Canoa.

Ethics declarations

Funding source

This work was financially supported by the Xunta de Galicia (CN 2012/184).

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 458 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canoa, P., Rivadulla, M.L., Popplewell, J. et al. Use of surface plasmon resonance in the binding study of vitamin D, metabolites and analogues with vitamin D binding protein. Anal Bioanal Chem 409, 2547–2558 (2017). https://doi.org/10.1007/s00216-017-0200-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0200-6

Keywords

Navigation