Skip to main content
Log in

Models of Particles of the Michie–King Type

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we study the model of the Michie–King distribution of the self-gravitating system of diffusive particles. This leads to the pressure function of the Michie–King type, being the alternative to the Maxwell–Boltzmann and Fermi–Dirac statistics. The most recent considerations of such systems were suggested by de Vega et al. and Chavanis et al. We consider the existence vs blow-up depending on mass M and the temperature \(\theta \) of the system. In the two dimensional case \(8\pi \) is the threshold value for the \(M/\theta \) for the classical Michie–King model exactly like in the Maxwell–Boltzmann case. Related systems appear in models of chemotaxis and description of 2-D Euler vortices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrews, G., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and its Applications, vol. 71. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  2. Arnold, A., Carrillo, J.A., Desvillettes, L., Dolbeault, J., Jüngel, A., Lederman, C., Markowich, P.A., Toscani, G., Villani, C.: Entropies and equilibria of many-particle systems: an essay on recent research. Monatshefte für Mathematik. 142, 35–43 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Biler, P., Nadzieja, T.: Existence and nonexistence of solutions for a model of gravitational interaction of particles. I. Colloq. Math. 66, 319–333 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biler, P., Dolbeault, J., Esteban, M.J., Markowich, P.A., Nadzieja, T.: Steady states for Streater’s energy-transport models of self-gravitating particles. Transp. Trans. Regimes Springer IMA Ser. 135, 37–56 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biler, P., Nadzieja, T., Stańczy, R.: Nonisothermal systems of self-interacting Fermi-Dirac particles. Banach Center Publ. 66, 61–78 (2004)

    Article  MATH  Google Scholar 

  6. Biler, P., Stańczy, R.: Parabolic-elliptic systems with general density-pressure relations. Sūrikaisekikenkyūsho Kōkyūroku. 1405, 31–53 (2004)

    Google Scholar 

  7. Binney, J., Tremaine, S.: Galactic Dynamics. Princeton: Princeton Series in Astrophysics (1987)

  8. Blanchet, A., Dolbeault, J., Perthame, B.: Two-dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Differ. Equ. 2006, 1–33 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Bors, D., Stańczy, R.: Existence and continuous dependence on parameters of radially symmetric solutions to astrophysical model of self-gravitating particles. Math. Meth. Appl. Sci. 42, 7381–7394 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bors, D., Walczak, S.: Nonlinear elliptic systems with variable boundary data. Nonlinear Anal. Theory Methods Appl. 52, 1347–1364 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bors, D., Walczak, S.: Stability of nonlinear elliptic systems with distributed parameters and variable boundary data. J. Comput. Appl. Math. 164–165, 117–130 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bors, D., Walczak, S.: Optimal control of elliptic systems with distributed and boundary controls. Nonlinear Anal. Theory Methods Appl. 63, 1367–1376 (2005)

    Article  MATH  Google Scholar 

  13. Bors, D., Stańczy, R.: Dynamical system modeling fermionic limit. Discrete Contin. Dyn. Syst. B. 23, 45–55 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Caglioti, E., Lions, P.L., Marchioro, C., Pulvirenti, M.: A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Commun. Math. Phys. 143, 501–525 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Caglioti, E., Lions, P.L., Marchioro, C., Pulvirenti, M.: A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Part II. Commun. Math. Phys. 174, 229–260 (1995)

    Article  ADS  MATH  Google Scholar 

  16. Chandrasekhar, S.: The maximum mass of ideal white dwarf stars. Astrophys. J. 74, 81–82 (1931)

    Article  ADS  MATH  Google Scholar 

  17. Chandrasekhar, S.: The highly collapsed configurations of a stellar mass. Mon. Not. R. Astron. Soc. 95, 207–225 (1935)

    Article  ADS  MATH  Google Scholar 

  18. Chandrasekhar, S.: An introduction to the study of stellar structure. Univ. Chicago Pub., reprinted by Dover Pub. 1958

  19. Chavanis, P.H.: On the coarse-grained evolution of collisionless stellar systems. Mon. Not. R. Astron. Soc. 300, 981–991 (1998)

    Article  ADS  Google Scholar 

  20. Chavanis, P.H.: Gravitational instability of polytropic spheres and generalized thermodynamics. Astron. Astrophys. 386, 732–742 (2002)

    Article  ADS  Google Scholar 

  21. Chavanis, P.H.: Generalized thermodynamics and Fokker–Planck equations. Applications to stellar dynamics and two-dimensional turbulence. Phys. Rev. E. 68, 036108 (2003)

    Article  ADS  Google Scholar 

  22. Chavanis, P.H.: Statistical mechanics and thermodynamic limit of self-gravitating fermions in D dimensions. Phys. Rev. E. 69, 066126 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  23. Chavanis, P.H.: Generalized thermodynamics and kinetic equations: Boltzmann Landau. Kramers and Smoluchowski. Phys. A. 332, 89–122 (2004)

    Article  MathSciNet  Google Scholar 

  24. Chavanis, P.H.: Generalized kinetic equations and effective thermodynamics. Banach Center Publ. 66, 79–101 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chavanis, P.H., Laurençot, Ph, Lemou, M.: Chapman–Enskog derivation of the generalized Smoluchowski equation. Phys. A. 341, 145–164 (2004)

    Article  MathSciNet  Google Scholar 

  26. Chavanis, P.H.: Phase transitions in self-gravitating systems. Int. J. Mod. Phys. B. 20, 3113–3198 (2006)

    Article  ADS  MATH  Google Scholar 

  27. Chavanis, P.H.: Critical mass of bacterial populations and critical temperature of self-gravitating Brownian particles in two dimensions. Phys. A 384, 392–412 (2007)

    Article  MathSciNet  Google Scholar 

  28. Chavanis, P.H.: Nonlinear mean field Fokker–Planck equations. Application to the chemotaxis of biological populations. Eur. Phys. J. B. 62, 179–208 (2008)

    Article  ADS  MATH  Google Scholar 

  29. Chavanis, P.H.: Two-dimensional Brownian vortices. Phys. A 387, 6917–6942 (2008)

    Article  MathSciNet  Google Scholar 

  30. Chavanis, P.H.: Statistical mechanics of two-dimensional vortices and stellar systems. In: Dauxois, T., Ruffo, S., Arimond, E., Wilkens, M. (eds.) Dynamics and Thermodynamics of Systems with Long Range Interactions, p. 602. Lecture Notes in Physics, Springer, Berlin (2002)

  31. Chavanis, P.H.: Kinetic theory of Onsager’s vortices in two-dimensional hydrodynamics. Phys. A 391, 3657–3679 (2012)

    Article  MathSciNet  Google Scholar 

  32. Chavanis, P.H., Sommeria, J., Robert, R.: Statistical mechanics of two-dimensional vortices and collisionless stellar systems. Astrophys J. 471, 385–399 (1996)

    Article  ADS  Google Scholar 

  33. Chavanis, P.H., Lemou, M., Méhats, F.: Models of dark matter halos based on statistical mechanics: I. The classical King model. Phys. Rev. D 91, 063531 (2015)

    Article  ADS  Google Scholar 

  34. Chavanis, P.H., Lemou, M., Méhats, F.: Models of dark matter halos based on statistical mechanics: II. The fermionic King model. Phys. Rev. D 92, 123527 (2015)

    Article  ADS  Google Scholar 

  35. Dolbeault, J., Stańczy, R.: Non-existence and uniqueness results for supercritical semilinear elliptic equations. Annales Henri Poincaré. 10, 1311–1333 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Dolbeault, J., Stańczy, R.: Bifurcation diagrams and multiplicity for nonlocal elliptic equations modeling gravitating systems based on Fermi-Dirac statistics. Discrete Contin. Dyn. Syst. A. 35, 139–154 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. King, I.R.: The structure of star clusters. II. Steady-state velocity distributions. Astron. J. 70, 376–383 (1965)

    Article  ADS  Google Scholar 

  38. Kozono, H., Sugiyama, Y., Yahagi, Y.: Existence and uniqueness theorem on weak solutions to the parabolic-elliptic Keller–Segel system. J. Differ. Equ. 235, 2295–2313 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Lieb, E.H., Yau, H.T.: The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Commun. Math. Phys. 112, 147–174 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Michie, R.W.: On the distribution of high energy stars in spherical stellar systems. Mon. Not. R. Astron. Soc. 125, 127–139 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  41. Onsager, L.: Statistical hydrodynamics. Suppl. Nuovo Cim. 6, 279–287 (1949)

    Article  ADS  MathSciNet  Google Scholar 

  42. Ruffini, R., Stella, L.: On semi-degenerate equilibrium configurations of collisionless self-gravitating Fermi gas. Astron. Astrophys. 119, 35–41 (1983)

    ADS  Google Scholar 

  43. Stańczy, R.: Steady states for a system describing self-gravitating Fermi–Dirac particles. Differ. Int. Equ. 18, 567–582 (2005)

    MathSciNet  MATH  Google Scholar 

  44. Stańczy, R.: Self-attracting Fermi–Dirac particles in canonical and microcanonical setting. Math. Method Appl. Sci. 28, 975–990 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Stańczy, R.: The existence of equilibria of many-particle systems. Proc. R. Soc. Edinburgh. 139A, 623–631 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Stańczy, R.: On an evolution system describing self-gravitating particles in microcanonical setting. Monatshefte für Mathematik. 162, 197–224 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Stańczy, R.: On stationary and radially symmetric solutions to some drift-diffusion equations with nonlocal term. Appl. Anal. 95, 97–104 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sugiyama, Y.: Extinction, decay and blow-up for Keller–Segel systems of fast diffusion type. J. Differ. Equ. 250, 3047–3087 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. de Vega, H.J., Salucci, P., Sanchez, N.G.: Observational rotation curves and density profiles vs the Thomas–Fermi galaxy structure theory. Mon. Not. R. Astron. Soc. 442, 2717–2727 (2014)

    Article  ADS  Google Scholar 

  50. de Vega, H.J., Sanchez, N.G..: Warm Dark Matter Galaxies with Central Supermassive Black-Holes. arXiv:1705.05418

  51. de Vega, H.J., Sanchez, N.G..: Dark matter in galaxies: the dark matter particle mass is about 7 keV. arXiv:1304.0759: based on lectures: NuMass Milano-Bicocca 2013, Cosmic Frontiers SLAC 2013, The Chalonge Torino Colloquium 2013, The Paris Chalonge Colloquium 2014

  52. Winkler, M.: Global classical solvability and generic infinite-time blow-up in quasilinear Keller–Segel systems with bounded sensitivities. J. Differ. Equ. 266, 8034–8066 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Piotr Biler and anonymous referees for valuable comments and remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Stańczy.

Additional information

Communicated by C. Mouhot.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bors, D., Stańczy, R. Models of Particles of the Michie–King Type. Commun. Math. Phys. 382, 1243–1262 (2021). https://doi.org/10.1007/s00220-021-03981-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-03981-8

Navigation