Skip to main content
Log in

A Convex Analysis Approach to Entropy Functions, Variational Principles and Equilibrium States

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

A Correction to this article was published on 07 July 2023

This article has been updated

Abstract

Using methods from Convex Analysis, for each generalized pressure function we define an upper semi-continuous affine entropy-like map, establish an abstract variational principle for both countably and finitely additive probability measures and prove that equilibrium states always exist. We show that this conceptual approach imparts a new insight on dynamical systems without a measure with maximal entropy, may be used to detect second-order phase transitions, prompts the study of finitely additive ground states for non-uniformly hyperbolic transformations and grants the existence of finitely additive Lyapunov equilibrium states for singular value potentials generated by linear cocycles over continuous self-maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

References

  1. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis, 3rd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  2. Antonevich, A.B., Bakhtin, V.I., Lebedev, A.V.: On t-entropy and variational principle for the spectral radii of transfer and weighted shift operators. Ergodic Theory Dyn. Syst. 31, 995–1045 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Asimov, L., Ellis, A.: Convexity Theory and Its Applications in Functional Analysis. London Mathematical Society Monographs 16. Academic Press, New York (1980)

  4. Baire, R.: Leçons sur les Fonctions Discontinues, professées au Collège de France. Gauthier-Villars, Paris (1905)

    MATH  Google Scholar 

  5. Baladi, V., Demers, M.: On the measure of maximal entropy for finite horizon Sinai Billiard maps. J. Am. Math. Soc. 33(2), 381–449 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bakhtin, V.I.: On t-entropy and variational principle for the spectral radius of weighted shift operators. Ergodic Theory Dyn. Syst. 30, 1331–1342 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bakhtin, V.I., Lebedev, A.V.: Entropy statistic theorem and variational principle for t-entropy are equivalent. J. Math. Anal. Appl. 474, 59–71 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bárány, B., Käenmäki, A., Morris, I.: Domination, almost additivity and thermodynamical formalism for planar matrix cocycles. Israel J. Math. 239, 173–214 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barone, E., Bhaskara Rao, K.P.S.: Poincaré recurrence theorem for finitely additive measures. Rend. Mat. 7:1:4, 521–526 (1981)

  10. Barreira, L.: A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems. Ergodic Theory Dyn. Syst. 16, 871–927 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Barreira, L.: Non-additive thermodynamic formalism: equilibrium and Gibbs measures. Discrete Contin. Dyn. Syst. 16, 279–305 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bhaskara, K.P.S., Bhaskara, M.: Theory of Charges: A Study of Finitely Additive Measures. Academic Press, London (1983)

    MATH  Google Scholar 

  13. Biś, A., Carvalho, M., Mendes, M., Varandas, P.: Entropy functions for semigroup actions. arXiv:2009.07212

  14. Bishop, E., Phelps, R.: The support functionals of a convex set. In: Proceedings of Symposia in Pure Mathematics, vol. VII, pp. 27–35. American Mathematical Society, Providence (1963)

  15. Bochi, J., Morris, I.: Equilibrium states of generalised singular value potentials and applications to affine iterated function systems. Geom. Funct. Anal. 28, 995–1028 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bochi, J., Rams, M.: The entropy of Lyapunov-optimizing measures of some matrix cocycles. J. Modern Dyn. 10, 255–286 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bonatti, C., Díaz, L., Viana, M.: Dynamics Beyond Uniform Hyperbolicity. Encyclopaedia of Mathematical Sciences 102. Springer, Berlin (2004)

  18. Bourbaki, N.: General Topology. Chapters 5–10. Elements of Mathematics. Springer, Berlin (1998)

  19. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lectures Notes in Mathematics 470. Springer, Berlin (1975)

  20. Bowen, R.: Symbolic dynamics for hyperbolic flows. Am. J. Math. 95, 429–460 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  21. Boyle, M., Downarowicz, T.: The entropy theory of symbolic extensions. Invent. Math. 156, 119–161 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Bruin, H., Todd, M.: Equilibrium states for potentials with sup \(\phi -\) inf \(\phi < h_{\text{ top }}(f)\). Commun. Math. Phys. 283, 579–611 (2008)

    Article  ADS  Google Scholar 

  23. Bruin, H., Terhesiu, D., Todd, M.: The pressure function for infinite equilibrium states. Israel J. Math. 232, 775–826 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bufetov, A.: Finitely-additive measures on the asymptotic foliations of a Markov compactum. Moscow Math. J. 14(2), 205–224 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Buzzi, J.: Intrinsic ergodicity of smooth interval maps. Israel J. Math. 100, 125–161 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Buzzi, J.: \(C^r\) surface diffeomorphisms with no maximal entropy measure. Ergodic Theory Dyn. Syst. 34(6), 1770–1793 (2014)

    Article  MATH  Google Scholar 

  27. Buzzi, J., Crovisier, S., Sarig, O.: Measures of maximal entropy for surface diffeomorphisms. Ann. Math. 195, 421–508 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  28. Cao, Y., Feng, D., Huang, W.: The thermodynamic formalism for sub-additive potentials. Discrete Contin. Dyn. Syst. 20, 639–657 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Carvalho, M., Rodrigues, F.B., Varandas, P.: Semigroup actions of expanding maps. J. Stat. Phys. 166, 114–136 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Chen, R.: A finitely additive version of Kolmogorov’s law of iterated logarithm. Israel J. Math. 23, 209–220 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  31. Chen, R.: Some finitely additive versions of the strong law of large numbers. Israel J. Math. 24, 244–259 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  32. Cioletti, L., Silva, E., Stadlbauer, M.: Thermodynamic formalism for topological Markov chains on standard Borel spaces. Discrete Contin. Dyn. Syst. 39(11), 6277–6298 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Cioletti, L., van Enter, A., Ruviaro, R.: The double transpose of the Ruelle operator. arXiv:1710.03841v2

  34. Comman, H.: Criteria for the density of the graph of the entropy map restricted to ergodic states. Ergodic Theory Dyn. Syst. 37, 758–785 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Coronel, D., Rivera-Letelier, J.: Sensitive dependence of geometric Gibbs states at positive temperature. Commun. Math. Phys. 368, 383–425 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Cuneo, N.: Additive, almost additive and asymptotically additive potential sequences are equivalent. Commun. Math. Phys. 377, 2579–2595 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Cuth, M., Kalenda, O., Kaplicky, P.: Finitely additive measures and complementability of Lipschitz-free spaces. Israel J. Math. 230(1), 409–442 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Daniëls, H., van Enter, A.: Differentiability properties of the pressure in lattice systems. Commun. Math. Phys. 71, 65–76 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Downarowicz, T., Newhouse, S.: Symbolic extensions and smooth dynamical systems. Invent. Math. 160, 453–499 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Downarowicz, T.: Entropy in Dynamical Systems. New Mathematical Monographs 18. Cambridge University Press, Cambridge (2011)

  41. Dubins, L.: On Lebesgue-like extensions of finitely additive measures. Ann. Probab. 2, 456–463 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  42. Dunford, N., Schwartz, J.: Linear Operators I. Wiley, New York (1958)

    MATH  Google Scholar 

  43. Dunford, N., Schwartz, J.: Linear Operators II. Interscience Publishers Inc., New York (1963)

    MATH  Google Scholar 

  44. Ellis, R.: Entropy. Large Deviations and Statistical Mechanics. Classics in Mathematics. Springer, Berlin (2006)

    MATH  Google Scholar 

  45. Feng, D.-J., Huang, W.: Lyapunov spectrum of asymptotically sub-additive potentials. Commun. Math. Phys. 297, 1–43 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Feng, D.-J., Käenmäki, A.: Equilibrium states of the pressure function for products of matrices. Discrete Contin. Dyn. Syst. 30, 699–708 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Fichtenholz, G., Kantorovich, L.: Sur les opérations linéaires dans l’espace des fonctions bornées. Studia Math. 5, 69–98 (1934)

    Article  MATH  Google Scholar 

  48. Föllmer, H., Schied, A.: Stochastic Finance, An Introduction in Discrete Time. de Gruyter Studies in Mathematics 27. de Gruyter, Berlin (2002)

  49. Giulietti, P., Kloeckner, B., Lopes, A.O., Marcon, D.: The calculus of thermodynamical formalism. J. Eur. Math. Soc. 20, 2357–2412 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  50. Hewitt, E., Yosida, K.: Finitely additive measures. Trans. Am. Math. Soc. 72, 46–66 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  51. Hildebrandt, T.: On bounded functional operations. Trans. Am. Math. Soc. 36(4), 868–875 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  52. Iommi, G., Todd, M.: Transience in dynamical systems. Ergodic Theory Dyn. Syst. 33(5), 1450–1476 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  53. Israel, R.: Convexity in the Theory of Lattice Gases. Princeton Series in Physics. Princeton University Press, Princeton (1979)

    MATH  Google Scholar 

  54. Israel, R., Phelps, R.: Some convexity questions arising in statistical mechanics. Math. Scand. 54, 133–156 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  55. Jenkinson, O.: Ergodic optimization in dynamical systems. Ergodic Theory Dyn. Syst. 39(10), 2593–2618 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  56. Karandikar, R.: A general principle for limit theorems in finitely additive probability. Trans. Am. Math. Soc. 273(2), 541–550 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  57. Keller, G.: Equilibrium States in Ergodic Theory. London Mathematical Society Student Texts. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  58. Kingman, J., Taylor, S.: Introduction to Measure and Probability. Cambridge University Press, Cambridge (1966)

    Book  MATH  Google Scholar 

  59. Lopes, A.O.: The zeta function, nondifferentiability of pressure, and the critical exponent of transition. Adv. Math. 101, 133–165 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  60. Lopes, A.O., Mengue, J., Mohr, J., Souza, R.: Entropy and variational principle for one-dimensional lattice systems with a general a priori probability: positive and zero temperature. Ergodic Theory Dyn. Syst. 35(6), 1925–1961 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  61. Maharan, D.: Finitely additive measures on the integers. Sankhya Indian J. Stat. 38, 44–59 (1976)

    MathSciNet  Google Scholar 

  62. Maynard, H.B.: A Radon-Nikodym theorem for finitely additive bounded measures. Pac. J. Math. 83(2), 401–413 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  63. Mazur, S.: Über konvexe Mengen in linearen normierten Räumen. Studia Math. 4, 70–84 (1933)

    Article  MATH  Google Scholar 

  64. Mohammadpour, R.: Zero temperature limits of equilibrium states for subadditive potentials and approximation of the maximal Lyapunov exponent. Topol. Methods Nonlinear Anal. 55(2), 697–710 (2020)

    MathSciNet  MATH  Google Scholar 

  65. Newhouse, S.: Continuity properties of the entropy. Ann. Math. 129, 215–237 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  66. Nikodym, O.: A theorem on infinite sequences of finitely additive real valued measures. Rend. Sem. Mat. Padova 24, 265–286 (1955)

    MathSciNet  MATH  Google Scholar 

  67. Park, K.: Quasi-multiplicativity of typical cocycles. Commun. Math. Phys. 376(3), 1957–2004 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Parry, W., Pollicott, M.: Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque 187–188, 1–268 (1990)

    MathSciNet  MATH  Google Scholar 

  69. Paterson, A.: Amenability. Mathematical Surveys and Monographs, 29. American Mathematical Society, Providence (1988)

  70. Phelps, R.: Convex Functions, Monotone Operators and Differentiability. Lecture Notes in Mathematics 1364, 2nd edn. Springer, New York (1993)

  71. Pinheiro, V.: Expanding measures. Ann. Inst. H. Poincaré Anal. Non Linéaire 28, 889–939 (2011)

  72. Przytycki, F., Rivera-Letelier, J., Smirnov, S.: Equivalence and topological invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps. Invent. Math. 151(1), 29–63 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Przytycki, F., Rivera-Letelier, J.: Geometric pressure for multimodal maps of the interval. Mem. Am. Math. Soc. 259, 1246, v+81 (2019)

  74. Purves, R., Sudderth, W.: Some finitely additive probability. Ann. Probab. 4(2), 259–276 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  75. Ramakrishnan, S.: Central limit theorems in a finitely additive setting. Illinois J. Math. 28(1), 139–161 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  76. Ramakrishnan, S.: A finitely additive generalization of Birkhoff’s ergodic theorem. Proc. Am. Math. Soc. 96(2), 299–305 (1986)

    MathSciNet  MATH  Google Scholar 

  77. Ratner, M.: Markov partitions for Anosov flows on n-dimensional manifolds. Israel J. Math. 15, 92–114 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  78. Reed, M., Simon, B.: Methods of Modern Mathematical Physics: Functional Analysis. Academic Press, London (1981)

    MATH  Google Scholar 

  79. Roberts, A., Varberg, D.: Convex Functions. Academic Press, London (1973)

    MATH  Google Scholar 

  80. Rohlin, V.A.: Exact endomorphisms of a Lebesgue space. Izv. Akad. Nauk SSSR Ser. Mat. 25, 499–530 (1961); English translation: Am. Math. Soc. Transl. 39:2 (1964) 1–36

  81. Ruelle, D.: Thermodynamic Formalism. The Mathematical Structures of Classical Equilibrium Statistical Mechanics. Addison-Wesley, New York (1978)

    MATH  Google Scholar 

  82. Ruette, S.: Mixing \(C^r\) maps of the interval without maximal measure. Israel J. Math. 127, 253–277 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  83. Sarig, O.: Symbolic dynamics for surface diffeomorphisms with positive entropy. J. Am. Math. Soc. 26(2), 341–426 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  84. Sarig, O.: Thermodynamic formalism for countable Markov shifts. Hyperbolic dynamics, fluctuations and large deviations. In: Proceedings of Symposia in Pure Mathematics 89, pp. 81–117. American Mathematical Society, Providence (2015)

  85. Schreiber, S.: On growth rates of sub-additive functions for semi-flows. J. Differ. Equ. 148, 334–350 (1998)

    Article  ADS  MATH  Google Scholar 

  86. Sinai, Y.: Gibbs measures in ergodic theory. Russ. Math. Surv. 27, 21–69 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  87. Toland, J.: The Dual of \(L_\infty (X, \cal{L}, \lambda )\) Finitely Additive Measures and Weak Convergence. Springer Briefs in Mathematics. Springer Nature Switzerland AG, Birkhäuser (2020)

    Book  MATH  Google Scholar 

  88. Varandas, P., Viana, M.: Existence, uniqueness and stability of equilibrium states for non-uniformly expanding maps. Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 555–593 (2010)

  89. Venegeroles, R.: Thermodynamic phase transitions for Pomeau-Manneville maps. Phys. Rev. E 86(2), 021114 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  90. Viana, M., Yang, J.: Oral presentation at International Conference on Dynamical Systems. IMPA, Rio de Janeiro (2015)

  91. Wagon, S.: The Banach–Tarski Paradox. Encyclopedia of Mathematics and Its Applications, vol. 24. Cambridge University Press, Cambridge (1985)

  92. Walters, P.: An Introduction to Ergodic Theory. Springer, New York (1975)

    MATH  Google Scholar 

  93. Walters, P.: Differentiability properties of the pressure of a continuous transformation on a compact metric space. J. Lond. Math. Soc. 46(3), 471–481 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  94. Zubov, D.: Finitely additive measures on the unstable leaves of Anosov diffeomorphisms. Funct. Anal. Appl. 53, 232–236 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for the apposite comments and valuable suggestions that have helped us to improve the manuscript. The authors also thank G. Iommi, B. Kloeckner, A. Lopes, J. Rivera-Letelier and M. Todd for their insightful remarks on the first version of this text. AB was partially supported by the inner Lodz University Grant 11/IDUB/DOS/2021. MC, MM and PV were partially supported by CMUP, which is financed by national funds through FCT—Fundação para a Ciência e a Tecnologia, I.P., under the project with reference UIDB/00144/2020. MC also acknowledges financial support from the project PTDC/MAT-PUR/4048/2021. PV benefited from the Grant CEECIND/03721/2017 of the Stimulus of Scientific Employment, Individual Support 2017 Call, awarded by FCT, and from the project ‘New trends in Lyapunov exponents’ (PTDC/MAT-PUR/29126/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Varandas.

Additional information

Communicated by C. Liverani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biś, A., Carvalho, M., Mendes, M. et al. A Convex Analysis Approach to Entropy Functions, Variational Principles and Equilibrium States. Commun. Math. Phys. 394, 215–256 (2022). https://doi.org/10.1007/s00220-022-04403-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04403-z

Navigation