Skip to main content
Log in

Sequential activation of axial muscles during different forms of rhythmic behavior in man

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In humans, studies of back muscle activity have mainly addressed the functioning of lumbar muscles during postural adjustments or rhythmic activity, including locomotor tasks. The present study investigated how back muscles are activated along the spine during rhythmical activities in order to gain insights into spinal neuronal organization. Electromyographic recordings of back muscles were performed at various trunk levels, and changes occurring in burst amplitudes and phase relationships were analyzed. Subjects performed several rhythmic behaviors: forward walking (FW), backward walking (BW), amble walking (where the subjects moved their arms in phase with the ipsilateral leg), walking on hands and knees (HK) and walking on hands with the knees on the edge of a treadmill (Hand). In a final task, the subjects were standing and were asked to swing (Swing) only their arms as if they were walking. It was found that axial trunk muscles are sequentially activated by a motor command running along the spinal cord (which we term “motor waves”) during various types of locomotion or other rhythmic motor tasks. The bursting pattern recorded under these conditions can be classified into three categories: (1) double-burst rhythmic activity in a descending (i.e., with a rostro-caudal propagation) motor wave during FW, BW and HK conditions; (2) double-burst rhythmic activity with a stationary motor wave (i.e., occurring in a single phase along the trunk) during the ‘amble’ walk condition; (3) monophasic rhythmic activity with an ascending (i.e., with a caudo-rostral propagation) motor wave during the Swing and Hands conditions. Our results suggest that the networks responsible for the axial propagation of motor activity during locomotion may correspond to those observed in invertebrates or lower vertebrates, and thus may have been partly phylogenetically conserved. Such an organization could support the dynamic control of posture by ensuring fluent movement during locomotion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anders C, Wagner H, Puta C, Grassme R, Petrovitch A, Scholle HC (2006) Trunk muscle activation patterns during walking at different speeds. J Electromyogr Kinesiol 17:245–252

    Article  PubMed  Google Scholar 

  • Assaiante C (1998) Development of locomotor balance control in healthy children. Neurosci Biobehav Rev 22:527–532

    Article  PubMed  CAS  Google Scholar 

  • Assaiante C, Amblard B (1995) an ontogenetic model for the sensorimotor organization of balance control in humans. Hum Mov Sci 14:13–43

    Article  Google Scholar 

  • Ballion B, Morin D, Viala D (2001) Forelimb locomotor generators and quadrupedal locomotion in the neonatal rat. Eur J Neurosci 14:1727–1738

    Article  PubMed  CAS  Google Scholar 

  • Bird AR, Bendrups AP, Payne CB (2003) The effect of foot wedging on electromyographic activity in the erector spinae and gluteus medius muscles during walking. Gait Posture 18:81–91

    Article  PubMed  Google Scholar 

  • Bouchet A, Cuilleret J (1983) Anatomie topographique, descriptive et fonctionnelle. Tome 2: Le cou et le thorax. Simep, Paris, pp 931–943

    Google Scholar 

  • Breniere Y, Ribreau C (1998) A double-inverted pendulum model for studying the adaptability of postural control to frequency during human stepping in place. Biol Cybern 79:337–345

    Article  PubMed  CAS  Google Scholar 

  • Brunt D, Liu SM, Trimble M, Bauer J, Short M (1999) Principles underlying the organization of movement initiation from quiet stance. Gait Posture 10:121–128

    Article  PubMed  CAS  Google Scholar 

  • Callaghan JP, Patla AE, McGill SM (1999) Low back three-dimensional joint forces, kinematics, and kinetics during walking. Clin Biomech (Bristol, Avon) 14:203–216

    Article  CAS  Google Scholar 

  • Cappellini G, Ivanenko YP, Poppele RE, Lacquaniti F (2006) Motor patterns in human walking and running. J Neurophysiol 95:3426–3437

    Article  PubMed  CAS  Google Scholar 

  • Carlson H, Halbertsma J, Zomlefer M (1979) Control of the trunk during walking in the cat. Acta Physiol Scand 105:251–253

    PubMed  CAS  Google Scholar 

  • Carlson H, Nilsson J, Thorstensson A, Zomlefer MR (1981) Motor responses in the human trunk due to load perturbations. Acta Physiol Scand 111:221–223

    Article  PubMed  CAS  Google Scholar 

  • Carlson H, Thorstensson A, Nilsson J (1988) Lumbar back muscle activity during locomotion: effects of voluntary modifications of normal trunk movements. Acta Physiol Scand 133:343–353

    PubMed  CAS  Google Scholar 

  • Cazalets JR (2005) Metachronal propagation of motoneurone burst activation in isolated spinal cord of newborn rat. J Physiol 568:583–597

    Article  PubMed  CAS  Google Scholar 

  • Cholewicki J, Simons AP, Radebold A (2000) Effects of external trunk loads on lumbar spine stability. J Biomech 33:1377–1385

    Article  PubMed  CAS  Google Scholar 

  • Crenna P, Cuong DM, Breniere Y (2001) Motor programmes for the termination of gait in humans: organisation and velocity-dependent adaptation. J Physiol 537:1059–1072

    Article  PubMed  CAS  Google Scholar 

  • Cromwell RL, Aadland-Monahan TK, Nelson AT, Stern-Sylvestre SM, Seder B (2001) Sagittal plane analysis of head, neck, and trunk kinematics and electromyographic activity during locomotion. J Orthop Sports Phys Ther 31:255–262

    PubMed  CAS  Google Scholar 

  • Danneels LA, Vanderstraeten GG, Cambier DC, Witvrouw EE, Stevens VK, De Cuyper HJ (2001) A functional subdivision of hip, abdominal, and back muscles during asymmetric lifting. Spine 26:E114–121

    Article  PubMed  CAS  Google Scholar 

  • Danneels LA, Coorevits PL, Cools AM, Vanderstraeten GG, Cambier DC, Witvrouw EE, De CH (2002) Differences in electromyographic activity in the multifidus muscle and the iliocostalis lumborum between healthy subjects and patients with sub-acute and chronic low back pain. Eur Spine J 11:13–19

    Article  PubMed  CAS  Google Scholar 

  • Delvolve I, Bem T, Cabelguen JM (1997) Epaxial and limb muscle activity during swimming and terrestrial stepping in the adult newt, Pleurodeles waltl. J Neurophysiol 78:638–650

    PubMed  CAS  Google Scholar 

  • Dietz V, Fouad K, Bastiaanse CM (2001) Neuronal coordination of arm and leg movements during human locomotion. Eur J Neurosci 14:1906–1914

    Article  PubMed  CAS  Google Scholar 

  • Dietz V (2002) Do human bipeds use quadrupedal coordination? Trends Neurosci 25:462–467

    Article  PubMed  Google Scholar 

  • Dofferhof AS, Vink P (1985) The stabilising function of the mm. iliocostales and the mm. multifidi during walking. J Anat 140(Pt 2):329–336

    PubMed  Google Scholar 

  • Falgairolle M, Cazalets JR (2007) Metachronal coupling between spinal neuronal networks during locomotor activity in newborn rat. J Physiol 580:87–102

    Article  PubMed  CAS  Google Scholar 

  • Falgairolle M, de Seze M, Juvin L, Morin D, Cazalets JR (2006) Coordinated network functioning in the spinal cord: an evolutionary perspective. J Physiol Paris 100:304–316

    Article  PubMed  Google Scholar 

  • Ferris DP, Huang HJ, Kao PC (2006) Moving the arms to activate the legs. Exerc Sport Sci Rev 34:113–120

    Article  PubMed  Google Scholar 

  • Gracovetsky S (1988) The spinal engine. Springer, New York, p 505

    Google Scholar 

  • Gracovetsky SA, Iacono S (1987) Energy transfers in the spinal engine. J Biomed Eng 9:99–114

    Article  PubMed  CAS  Google Scholar 

  • Gramsbergen A, Geisler HC, Taekema H, van Eykern LA (1999) The activation of back muscles during locomotion in the developing rat. Brain Res Dev Brain Res 112:217–228

    Article  PubMed  CAS  Google Scholar 

  • Granata KP, Wilson SE (2001) Trunk posture and spinal stability. Clin Biomech (Bristol, Avon) 16:650–659

    Article  CAS  Google Scholar 

  • Grasso R, Zago M, Lacquaniti F (2000) Interactions between posture and locomotion: motor patterns in humans walking with bent posture versus erect posture. J Neurophysiol 83:288–300

    PubMed  CAS  Google Scholar 

  • Grillner S, Wallen P (2002) Cellular bases of a vertebrate locomotor system-steering, intersegmental and segmental co-ordination and sensory control. Brain Res Brain Res Rev 40:92–106

    Article  PubMed  Google Scholar 

  • Hodges PW (2001) Changes in motor planning of feedforward postural responses of the trunk muscles in low back pain. Exp Brain Res 141:261–266

    Article  PubMed  CAS  Google Scholar 

  • Hodges PW, Bui BH (1996) A comparison of computer-based methods for the determination of onset of muscle contraction using electromyography. Electroencephalogr Clin Neurophysiol 101:511–519

    Article  PubMed  CAS  Google Scholar 

  • Huang QM, Thorstensson A (2000) Trunk muscle strength in eccentric and concentric lateral flexion. Eur J Appl Physiol 83:573–577

    Article  PubMed  CAS  Google Scholar 

  • Huang QM, Andersson E, Thorstensson A (2001) Intramuscular myoelectric activity and selective coactivation of trunk muscles during lateral flexion with and without load. Spine 26:1465–1472

    Article  PubMed  CAS  Google Scholar 

  • Islam SS, Zelenin PV, Orlovsky GN, Grillner S, Deliagina TG (2006) Pattern of motor coordination underlying backward swimming in the lamprey. J Neurophysiol 96:451–460

    Article  PubMed  Google Scholar 

  • Ivanenko YP, Poppele RE, Lacquaniti F (2004) Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol 556:267–282

    Article  PubMed  CAS  Google Scholar 

  • Ivanenko YP, Poppele RE, Lacquaniti F (2006) Spinal cord maps of spatiotemporal alpha-motoneuron activation in humans walking at different speeds. J Neurophysiol 95:602–618

    Article  PubMed  CAS  Google Scholar 

  • Juvin L, Simmers J, Morin D (2005) Propriospinal circuitry underlying interlimb coordination in mammalian quadrupedal locomotion. J Neurosci 25:6025–6035

    Article  PubMed  CAS  Google Scholar 

  • Koehler WJ, Schomburg ED, Steffens H (1984) Phasic modulation of trunk muscle efferents during fictive spinal locomotion in cats. J Physiol 353:187–197

    PubMed  CAS  Google Scholar 

  • Konz R, Fatone S, Gard S (2006) Effect of restricted spinal motion on gait. J Rehabil Res Dev 43:161–170

    Article  PubMed  Google Scholar 

  • Lamont EV, Zehr EP (2006) Task-specific modulation of cutaneous reflexes expressed at functionally relevant gait cycle phases during level and incline walking and stair climbing. Exp Brain Res 173:185–192

    Article  PubMed  Google Scholar 

  • Lamoth CJ, Daffertshofer A, Meijer OG, Lorimer Moseley G, Wuisman PI, Beek PJ (2004) Effects of experimentally induced pain and fear of pain on trunk coordination and back muscle activity during walking. Clin Biomech (Bristol, Avon) 19:551–563

    Article  Google Scholar 

  • Mickelborough J, van der Linden ML, Tallis RC, Ennos AR (2004) Muscle activity during gait initiation in normal elderly people. Gait Posture 19:50–57

    Article  PubMed  CAS  Google Scholar 

  • Miller WL, Sigvardt KA (2000) Extent and role of multisegmental coupling in the Lamprey spinal locomotor pattern generator. J Neurophysiol 83:465–476

    PubMed  CAS  Google Scholar 

  • Ng JK, Parnianpour M, Richardson CA, Kippers V (2001) Functional roles of abdominal and back muscles during isometric axial rotation of the trunk. J Orthop Res 19:463–471

    Article  PubMed  CAS  Google Scholar 

  • Nilsson J, Thorstensson A, Halbertsma J (1985) Changes in leg movements and muscle activity with speed of locomotion and mode of progression in humans. Acta Physiol Scand 123:457–475

    PubMed  CAS  Google Scholar 

  • Perennou D, Decavel P, Manckoundia P, Penven Y, Mourey F, Launay F, Pfitzenmeyer P, Casillas JM (2005) [Evaluation of balance in neurologic and geriatric disorders]. Ann Readapt Med Phys 48:317–335

    PubMed  CAS  Google Scholar 

  • Piirtola M, Era P (2006) Force platform measurements as predictors of falls among older people—a review. Gerontology 52:1–16

    Article  PubMed  Google Scholar 

  • Prince F, Winter D, Stergioli P, Walt S (1994) Anticipatory control of upper body balance during human locomotion. J de Kinesiologie 11:20–25

    Google Scholar 

  • Radebold A, Cholewicki J, Panjabi MM, Patel TC (2000) Muscle response pattern to sudden trunk loading in healthy individuals and in patients with chronic low back pain. Spine 25:947–954

    Article  PubMed  CAS  Google Scholar 

  • Richardson CA, Snijders CJ, Hides JA, Damen L, Pas MS, Storm J (2002) The relation between the transversus abdominis muscles, sacroiliac joint mechanics, and low back pain. Spine 27:399–405

    Article  PubMed  Google Scholar 

  • Sartor C, Charrel RN, de Lamballerie X, Sambuc R, De Micco P, Boubli L (1999) Evaluation of a disinfection procedure for hysteroscopes contaminated by hepatitis C virus. Infect Control Hosp Epidemiol 20:434–436

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, De Nunzio AM, Schieppati M (2005) Trunk muscle proprioceptive input assists steering of locomotion. Neurosci Lett 384:127–132

    Article  PubMed  CAS  Google Scholar 

  • Snijders CJ, Ribbers MT, de Bakker HV, Stoeckart R, Stam HJ (1998) EMG recordings of abdominal and back muscles in various standing postures: validation of a biomechanical model on sacroiliac joint stability. J Electromyogr Kinesiol 8:205–214

    Article  PubMed  CAS  Google Scholar 

  • Thorstensson A, Carlson H, Zomlefer MR, Nilsson J (1982) Lumbar back muscle activity in relation to trunk movements during locomotion in man. Acta Physiol Scand 116:13–20

    PubMed  CAS  Google Scholar 

  • Thorstensson A, Nilsson J, Carlson H, Zomlefer MR (1984) Trunk movements in human locomotion. Acta Physiol Scand 121:9–22

    PubMed  CAS  Google Scholar 

  • Winter DA, Yack HJ (1987) EMG profiles during normal human walking: stride-to-stride and inter-subject variability. Electroencephalogr Clin Neurophysiol 67:402–411

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki Y, Suzuki M, Ohkuwa T, Itoh H (2005) Maintenance of upright standing posture during trunk rotation elicited by rapid and asymmetrical movements of the arms. Brain Res Bull 67:30–39

    Article  PubMed  Google Scholar 

  • Zedka M, Prochazka A, Knight B, Gillard D, Gauthier M (1999) Voluntary and reflex control of human back muscles during induced pain. J Physiol 520(Pt 2):591–604

    Article  Google Scholar 

  • Zehr EP, Carroll TJ, Chua R, Collins DF, Frigon A, Haridas C, Hundza SR, Thompson AK (2004) Possible contributions of CPG activity to the control of rhythmic human arm movement. Can J Physiol Pharmacol 82:556–568

    Article  PubMed  CAS  Google Scholar 

  • Zehr EP, Duysens J (2004) Regulation of arm and leg movement during human locomotion. Neuroscientist 10:347–361

    Article  PubMed  Google Scholar 

  • Zomlefer MR, Provencher J, Blanchette G, Rossignol S (1984) Electromyographic study of lumbar back muscles during locomotion in acute high decerebrate and in low spinal cats. Brain Res 290:249–260

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks J. Simmers for correcting the final English version of the manuscript. This work was funded in part by the Ministère de la Recherche (ACI Neuroscience; ACI Plateformes Technologiques 032645), by the Région Aquitaine, and by the DGA (Direction Générale des Armées, N° 0334045). Mélanie Falgairolle is a fellow of the IRME (Institut pour la Recherche sur la Moelle épinière et l’Encéphale)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-René Cazalets.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Sèze, M., Falgairolle, M., Viel, S. et al. Sequential activation of axial muscles during different forms of rhythmic behavior in man. Exp Brain Res 185, 237–247 (2008). https://doi.org/10.1007/s00221-007-1146-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-007-1146-2

Keywords

Navigation