Skip to main content

Advertisement

Log in

Neuromuscular and biomechanical factors codetermine the solution to motor redundancy in rhythmic multijoint arm movement

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

How the CNS deals with the issue of motor redundancy remains a central question for motor control research. Here we investigate the means by which neuromuscular and biomechanical factors interact to resolve motor redundancy in rhythmic multijoint arm movements. We used a two-df motorised robot arm to manipulate the dynamics of rhythmic flexion–extension (FE) and supination–pronation (SP) movements at the elbow-joint complex. Participants were required to produce rhythmic FE and SP movements, either in isolation, or in combination (at the phase relationship of their choice), while we recorded the activity of key bi-functional muscles. When performed in combination, most participants spontaneously produced an in-phase pattern of coordination in which flexion is synchronised with supination. The activity of the Biceps Brachii (BB), the strongest arm muscle which also has the largest moment arms in both flexion and supination was significantly higher for FE and SP performed in combination than in isolation, suggesting optimal exploitation of the mechanical advantage of this muscle. In a separate condition, participants were required to produce a rhythmic SP movement while a rhythmic FE movement was imposed by the motorised robot. Simulations based upon a musculoskeletal model of the arm demonstrated that in this context, the most efficient use of the force–velocity relationship of BB requires that an anti-phase pattern of coordination (flexion synchronized with pronation) be produced. In practice, the participants maintained the in-phase behavior, and BB activity was higher than for SP performed in isolation. This finding suggests that the neural organisation underlying the exploitation of bifunctional muscle properties, in the natural context, constrains the system to maintain the “natural” coordination pattern in an altered dynamic environment, even at the cost of reduced biomechanical efficiency. We suggest an important role for afference from the imposed movement in promoting the “natural” pattern. Practical implications for the emerging field of robot-assisted therapy and rehabilitation are briefly mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Batschelet E (1981) Circular statistics in biology. Academic Press, London

    Google Scholar 

  • Bernstein N (1967) The co-ordination and regulation of movements. Pergamon, London

    Google Scholar 

  • Bobbert MF, Zandwijk JPV (1994) Dependence of human maximum jump height on moment arms of the bi-articular m. gastrocnemius; a simulation study. Hum Mov Sci 13:697–716

    Article  Google Scholar 

  • Brooke JD, Cheng J, Collins DF, McIlroy WE, Misiaszek JE, Staines WR (1997) Sensori-sensory afferent conditioning with leg movement: gain control in spinal reflex and ascending paths. Prog Neurobiol 51:393–421

    Article  PubMed  CAS  Google Scholar 

  • Burke RE (1999) The use of state-dependent modulation of spinal reflexes as a tool to investigate the organization of spinal interneurons. Exp Brain Res 128:263–277

    Article  PubMed  CAS  Google Scholar 

  • Cheung VC, d’Avella A, Tresch MC, Bizzi E (2005) Central and sensory contributions to the activation and organization of muscle synergies during natural motor behaviors. J Neurosci 25:6419–6434

    Article  PubMed  CAS  Google Scholar 

  • Cnockaert JC, Lensel G, Pertuzon E (1975) Relative contribution of individual muscles to the isometric contraction of a muscular group. J Biomech 8:191–197

    Article  PubMed  CAS  Google Scholar 

  • d’Avella A, Saltiel P, Bizzi E (2003) Combinations of muscle synergies in the construction of a natural motor behavior. Nat Neurosci 6:300–308

    Article  PubMed  CAS  Google Scholar 

  • Davoodi R, Loeb GE (2002) A software tool for faster development of complex models of musculoskeletal systems and sensorimotor controllers in Simulink. J Appl Biomech 18:357–365

    Google Scholar 

  • de Rugy A, Riek S, Carson RG (2006a) Neuromuscular-skeletal origins of predominant patterns of coordination in rhythmic two-joint arm movement. J Mot Behav 38:7–14

    Article  PubMed  Google Scholar 

  • de Rugy A, Riek S, Carson RG (2006b) Influence of predominant patterns of coordination on the exploitation of interaction torques in a two-joint rhythmic arm movement. Exp Brain Res 175:439–452

    Article  PubMed  Google Scholar 

  • Debicki DB, Gribble PL (2005) Persistence of inter-joint coupling during single-joint elbow flexions after shoulder fixation. Exp Brain Res 163:252–257

    Article  PubMed  CAS  Google Scholar 

  • Ettema GJ, Taylor E, North JD, Kippers V (2005) Muscle synergies at the elbow in static and oscillating isometric torque tasks with dual degrees of freedom. Motor Control 9:59–74

    PubMed  Google Scholar 

  • Ettema G, Styles G, Kippers V (1998) The moment arms of 23 muscles segments of the upper limb with varying elbow and forearm positions: implications for motor control. Hum Mov Sci 17:201–220

    Article  Google Scholar 

  • Ferraro M, Palazzolo JJ, Krol J, Krebs HI, Hogan N, Volpe BT (2003) Robot-aided sensorimotor arm training improves outcome in patients with chronic stroke. Neurology 61:1604–1607

    PubMed  CAS  Google Scholar 

  • Gielen CC, Ramaekers L, van Zuylen EJ (1988) Long-latency stretch reflexes as co-ordinated functional responses in man. J Physiol 407:275–292

    PubMed  CAS  Google Scholar 

  • Gielen CCAM, van Bolhuis BM, Theeuwen M (1995) On the control of biologically and kinematically redundant manipulators. Hum Mov Sci 14:487–509

    Article  Google Scholar 

  • Gielen CCAM, van Ingen Schenau GJ (1992) The constrained control of force and position by multilink manipulators. IEEE Trans Syst Man Cybern 22:1214–1219

    Article  Google Scholar 

  • Herder JL, Vrijlandt N, Antonides T, Cloosterman M, Mastenbroek PL (2006) Principle and design of a mobile arm support for people with muscular weakness. J Rehabil Res Dev 43:591–604

    Article  PubMed  Google Scholar 

  • Hogan N, Krebs HI (2004) Interactive robots for neuro-rehabilitation. Restor Neurol Neurosci 22:349–358

    PubMed  Google Scholar 

  • Holzbaur KR, Murray WM, Delp SL (2005) A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Ann Biomed Eng 33:829–840

    Article  PubMed  Google Scholar 

  • Jacobs R, Bobbert MF, n Schenau GJ (1996) Mechanical output from individual muscles during explosive leg extensions: the role of biarticular muscles. J Biomech 29:513–523

    Article  PubMed  CAS  Google Scholar 

  • Jamison JC, Caldwell GE (1993) Muscle synergies and isometric torque production: influence of supination and pronation level on elbow flexion. J Neurophysiol 70:947–960

    PubMed  CAS  Google Scholar 

  • Kahn LE, Zygman ML, Rymer WZ, Reinkensmeyer DJ (2006) Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: a randomized controlled pilot study. J Neuroeng Rehabil 3:12

    Article  PubMed  Google Scholar 

  • Keppel G (1991) Design and analysis: a researcher’s handbook, 3rd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Koshland GF, Hasan Z (2000) Electromyographic responses to a mechanical perturbation applied during impending arm movements in different directions: one-joint and two-joint conditions. Exp Brain Res 132:485–499

    Article  PubMed  CAS  Google Scholar 

  • Koshland GF, Hasan Z, Gerilovsky L (1991) Activity of wrist muscles elicited during imposed or voluntary movements about the elbow joint. J Mot Behav 23:91–100

    PubMed  CAS  Google Scholar 

  • Lacquaniti F, Soechting JF (1986) EMG responses to load perturbations of the upper limb: effect of dynamic coupling between shoulder and elbow motion. Exp Brain Res 61:482–496

    Article  PubMed  CAS  Google Scholar 

  • Latash ML (2000) The organization of quick corrections within a two-joint synergy in conditions of unexpected blocking and release of a fast movement. Clin Neurophysiol 111:975–987

    Article  PubMed  CAS  Google Scholar 

  • Latash ML, Scholz JP, Schoner G (2007) Toward a new theory of motor synergies. Motor Control 11:276–308

    PubMed  Google Scholar 

  • Lemay MA, Crago PE (1996) A dynamic model for simulating movements of the elbow, forearm, an wrist. J Biomech 29:1319–1330

    Article  PubMed  CAS  Google Scholar 

  • McCrea DA (2001) Spinal circuitry of sensorimotor control of locomotion. J Physiol 533:41–50

    Article  PubMed  CAS  Google Scholar 

  • Murray WM (1997) The functional capacity of the elbow muscles: anatomical measurements, computer modeling. and anthropometric scaling. Ph.D, thesis, Northwestern University

  • Murray WM, Delp SL, Buchanan TS (1995) Variation of muscle moment arms with elbow and forearm position. J Biomech 28:513–525

    Article  PubMed  CAS  Google Scholar 

  • Murray WM, Buchanan TS, Delp SL (2000) The isometric functional capacity of muscles that cross the elbow. J Biomech 33:943–952

    Article  PubMed  CAS  Google Scholar 

  • Naito A, Shindo M, Miyasaka T, Sun YJ, Morita H (1996) Inhibitory projection from brachioradialis to biceps brachii motoneurones in human. Exp Brain Res 111:483–486

    Article  PubMed  CAS  Google Scholar 

  • Naito A, Shindo M, Miyasaka T, Sun YJ, Momoi H, Chishima M (1998a) Inhibitory projections from pronator teres to biceps brachii motoneurones in human. Exp Brain Res 121:99–102

    Article  PubMed  CAS  Google Scholar 

  • Naito A, Sun YJ, Yajima M, Fukamachi H, Ushikoshi K (1998b) Electromyographic study of the elbow flexors and extensors in a motion of forearm pronation/supination while maintaining elbow flexion in humans. Tohoku J Exp Med 186:267–277

    Article  PubMed  CAS  Google Scholar 

  • Naito A (2004) Electrophysiological studies of muscles in the human upper limb: the biceps brachii. Anat Sci Int 79:11–20

    Article  PubMed  Google Scholar 

  • Pearson KG (2004) Generating the walking gait: role of sensory feedback. Prog Brain Res 143:123–129

    Article  PubMed  Google Scholar 

  • Pierce C, Block R, Aguinis H (2004) Cautionary note on reporting eta-squared values from multifactor ANOVA designs. Educ Psychol Meas 64:916–924

    Article  Google Scholar 

  • Pierrot-Deseilligny E (1996) Transmission of the cortical command for human voluntary movement through cervical propriospinal premotoneurons. Prog Neurobiol 48:489–517

    Article  PubMed  CAS  Google Scholar 

  • Praagman M, Veeger HE, Chadwick EK, Colier WN, van der Helm FC (2003) Muscle oxygen consumption, determined by NIRS, in relation to external force and EMG. J Biomech 36:905–912

    Article  PubMed  CAS  Google Scholar 

  • Prilutsky BI, Zatsiorsky VM (1994) Tendon action of two-joint muscles: transfer of mechanical energy between joints during jumping, landing, and running. J Biomech 27:25–34

    Article  PubMed  CAS  Google Scholar 

  • Prilutsky BI, Herzog W, Allinger TL (1996) Mechanical power and work of cat soleus, gastrocnemius and plantaris muscles during locomotion: possible functional significance of muscle design and force patterns. J Exp Biol 199:801–814

    PubMed  CAS  Google Scholar 

  • Rahman T, Sample W, Jayakumar S, King MM, Wee JY, Seliktar R, Alexander M, Scavina M, Clark A (2006) Passive exoskeletons for assisting limb movement. J Rehabil Res Dev 43:583–590

    Article  PubMed  Google Scholar 

  • Riener R, Lunenburger L, Colombo G (2006) Human-centered robotics applied to gait training and assessment. J Rehabil Res Dev 43:679–694

    Article  PubMed  Google Scholar 

  • Russell DM, Sternad D (2001) Sinusoidal visuomotor tracking: intermittent servo-control or coupled oscillations? J Mot Behav 33:329–349

    Article  PubMed  CAS  Google Scholar 

  • Scheidt RA, Rymer WZ (2000) Control strategies for the transition from multijoint to single-joint arm movements studied using a simple mechanical constraint. J Neurophysiol 83:1–12

    PubMed  CAS  Google Scholar 

  • Scholz JP, Schoner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126:289–230

    Article  PubMed  CAS  Google Scholar 

  • Sergio LE, Ostry DJ (1994) Coordination of mono- and bi-articular muscles in multi-degree of freedom elbow movements. Exp Brain Res 97:551–555

    Article  PubMed  CAS  Google Scholar 

  • Sergio LE, Ostry DJ (1995) Coordination of multiple muscles in two degree of freedom elbow movements. Exp Brain Res 105:123–137

    Article  PubMed  CAS  Google Scholar 

  • Shemmell J, Forner M, Tresilian JR, Riek S, Barry BK, Carson RG (2005a) Neuromuscular adaptation during skill acquisition on a two degree-of-freedom target-acquisition task: isometric torque production. J Neurophysiol 94:3046–3057

    Article  PubMed  Google Scholar 

  • Shemmell J, Tresilian JR, Riek S, Barry BK, Carson RG (2005b) Neuromuscular adaptation during skill acquisition on a two degree-of-freedom target-acquisition task: dynamic movement. J Neurophysiol 94:3058–3068

    Article  PubMed  Google Scholar 

  • Ter Haar Romeny BM, Denier van der Gon JJ, Gielen CC (1984) Relation between location of a motor unit in the human biceps brachii and its critical firing levels for different tasks. Exp Neurol 85:631–650

    Article  PubMed  CAS  Google Scholar 

  • Todorov E (2004) Optimality principles in sensorimotor control. Nat Neurosci 7:907–915

    Article  PubMed  CAS  Google Scholar 

  • van Schenau GJ (1989) From rotation to translation: constraints on multi-joint movements and the unique action of bi-articular muscles. Hum Mov Sci 8:301–337

    Article  Google Scholar 

  • van Soest AJ, Schwab AL, Bobbert MF, van Ingen Schenau GJ (1993) The influence of the biarticularity of the gastrocnemius muscle on vertical-jumping achievement. J Biomech 26:1–8

    Article  PubMed  Google Scholar 

  • van Zuylen EJ, Gielen CC, Denier van der Gon JJ (1988) Coordination and inhomogeneous activation of human arm muscles during isometric torques. J Neurophysiol 60:1523–1548

    PubMed  Google Scholar 

  • Windhorst U, Burke RE, Dieringer N, Evinger C, Feldman AG, Hasan Z (1991) What are the outputs of motor behavior and how are they controlled? In: Humphrey DR, Freund H-J (eds) Motor control: concepts and issues. Wiley, New York, pp 101–119

    Google Scholar 

  • Zajac FE (1989) Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng 17:359–411

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by The Australian Research Council, The National Health and Medical Research Council, and a University of Queensland Early Career Researcher Grant awarded to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aymar de Rugy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Rugy, A., Riek, S., Oytam, Y. et al. Neuromuscular and biomechanical factors codetermine the solution to motor redundancy in rhythmic multijoint arm movement. Exp Brain Res 189, 421–434 (2008). https://doi.org/10.1007/s00221-008-1437-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1437-2

Keywords

Navigation