Skip to main content
Log in

Coordination of the eyes and head during visual orienting

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Changing the direction of the line of sight is essential for the visual exploration of our environment. When the head does not move, re-orientation of the visual axis is accomplished with high velocity, conjugate movements of the eyes known as saccades. Our understanding of the neural mechanisms that control saccadic eye movements has advanced rapidly as specific hypotheses have been developed, evaluated and sometimes rejected on the basis of new observations. Constraints on new hypotheses and new tests of existing models have often arisen from the careful assessment of behavioral observations. The definition of the set of features (or rules) of saccadic eye movements was critical in the development of hypotheses of their neural control. When the head is free to move, changes in the direction of the line of sight can involve simultaneous saccadic eye movements and movements of the head. When the head moves in conjunction with the eyes to accomplish these shifts in gaze direction, the rules that helped define head-restrained saccadic eye movements are altered. For example, the slope relationship between duration and amplitude for saccadic eye movements is reversed (the slope is negative) during gaze shifts of similar amplitude initiated with the eyes in different orbital positions. Modifications to the hypotheses developed in head-restrained subjects may be needed to account for these new observations. This review briefly recounts features of head-restrained saccadic eye movements, and then describes some of the characteristics of coordinated eye–head movements that have led to development of new hypotheses describing the mechanisms of gaze shift control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bahill AT, Clark MR, Stark L (1975) The main sequence, a tool for studying human eye movements. Math Biosci 24:191–204

    Article  Google Scholar 

  • Bahill AT, Brockenbrough A, Troost BT (1981) Variability and development of a normative data base for saccadic eye movements. Res Vis Ophthal 21:116–126

    CAS  Google Scholar 

  • Baloh RW, Sills AW, Kumley WE, Honrubia V (1975) Quantitative measurement of saccade amplitude, duration, and velocity. Neurology 25:1065–1070

    PubMed  CAS  Google Scholar 

  • Barnes GR (1979) Vestibulo-ocular function during co-ordinated head and eye movements to acquire visual targets. J Physiol 287:127–147

    PubMed  CAS  Google Scholar 

  • Becker W, Jürgens R (1990) Human oblique saccades: quantitative analysis of the relation between horizontal and vertical components. Vis Res 30:893–920

    Article  PubMed  CAS  Google Scholar 

  • Becker W, Jürgens R (1992) Gaze saccades to visual targets: do head movements change the metrics. In: Berthoz A, Graf W, Vidal P-P (eds) The head–neck sensory motor system. Oxford University Press, New York, pp 427–433

    Google Scholar 

  • Bell CC (1981) An efference copy which is modified by reafferent input. Science 214:449–453

    Article  Google Scholar 

  • Bell CC (1982) Properties of a modifiable efference copy in an electric fish. J Neurophysiol 47:1043–1056

    PubMed  CAS  Google Scholar 

  • Bell CC (1984) Effects of motor commands on sensory inflow, with examples from electric fish. In: Bolis L, Keynes RD, Maddrell SHP (eds) Comparative physiology of sensory systems. Cambridge University Press, Cambridge, pp 637–646

    Google Scholar 

  • Bell C, Bodznick D, Montgomery J, Bastian J (1997a) The generation and subtraction of sensory expectations within cerebellum-like structures. Brain Behav Evol 50:17–31

    Article  PubMed  Google Scholar 

  • Bell CC, Han VZ, Sugawara Y, Grant K (1997b) Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387:278–281

    Article  PubMed  CAS  Google Scholar 

  • Bizzi E, Kalil RE, Tagliasco V (1971) Eye–head coordination in monkeys: evidence for centrally patterned organization. Science 173:452–454

    Article  PubMed  Google Scholar 

  • Bizzi E, Kalil RE, Morasso P (1972a) Two modes of active eye–head coordination in monkeys. Brain Res 40:45–48

    Article  PubMed  CAS  Google Scholar 

  • Bizzi E, Kalil RE, Morasso P, Tagliasco V (1972b) Central programming and peripheral feedback during eye–head coordination in monkeys. Bibl Ophthal 82:220–232

    PubMed  CAS  Google Scholar 

  • Blakemore C, Donaghy M (1980) Co-ordination of head and eyes in the gaze changing behaviour of cats. J Physiol 300:317–335

    PubMed  CAS  Google Scholar 

  • Cecala AL, Freedman EG (2008) Amplitude changes in response to target displacements during human eye–head movements. Vision Res 48:149–166

    Article  PubMed  Google Scholar 

  • Collewijn H (1977) Eye- and head movements in freely moving rabbits. J Physiol 266:471–498

    PubMed  CAS  Google Scholar 

  • Cowie RJ, Robinson DL (1994) Subcortical contributions to head movements in Macaques I. Contrasting effects of electrical stimulation of a medial pontomedullary region and the superior colliculus. J Neurophysiol 71:2648–2664

    Google Scholar 

  • Cullen KE, Guitton D (1997a) Analysis of primate IBN spike trains uding system identification techniques I. Relationship to eye movement dynamics during head-fixed saccades. J Neurophysiol 78:3259–3282

    PubMed  CAS  Google Scholar 

  • Cullen KE, Guitton D (1997b) Analysis of primate IBN spike trains using system identification techniques. II. Relationshp to gaze, eye and head movement dynamics during head-free gaze shifts. J Neurophysiol 78:3283–3306

    PubMed  CAS  Google Scholar 

  • Cullen KE, Huterer M, Braidwood DA, Sylvestre PA (2004) Time course of vestibuloocular reflex suppression during gaze shifts. J Neurophysiol 92:3408–3422

    Article  PubMed  Google Scholar 

  • Delreux V, Abeele SV, Lefevre P, Roucoux A (1991) Influences of eye position on the control of head movement amplitude. In: Paillard J (ed) Brain and space. Oxford University Press, Oxford, pp 38–48

    Google Scholar 

  • Dichgans J, Bizzi E, Morasso P, Tagliasco V (1973) Mechanisms underlying recovery of eye–head coordination following bilateral labyrinthectomy in monkeys. Exp Brain Res 18:548–562

    PubMed  CAS  Google Scholar 

  • Dichgans J, Bizzi E, Morasso P, Tagliasco V (1974) The role of vestibular and neck afferents during eye–head coordination in the monkey. Brain Res 71:225–232

    Article  PubMed  CAS  Google Scholar 

  • Freedman EG (2001) Interactions between eye and head control signals can account for movement kinematics. Biol Cybern 84:453–462

    Article  PubMed  CAS  Google Scholar 

  • Freedman EG (2005) Head–eye interactions during vertical gaze shifts made by rhesus monkeys. Exp Brain Res 167:557–570

    Article  PubMed  Google Scholar 

  • Freedman EG (2008) Coupling between horizontal and vertical components of saccadic eye movements during constant amplitude and direction gaze shifts in the rhesus monkey. J Neurophysiol (in review)

    Google Scholar 

  • Freedman EG, Cecala AL (2008) Oblique gaze shifts: head movements reveal new aspects of component coupling. In: Leigh RJ, Kennard C (eds) Using eye movements as an experimental probe of brain function. Elsevier, Amsterdam

    Google Scholar 

  • Freedman EG, Sparks DL (1997a) Activity of cells in the deeper layers of the superior colliculus of the rhesus monkey: evidence for a gaze displacement command. J Neurophysiol 78:1669–1690

    PubMed  CAS  Google Scholar 

  • Freedman EG, Sparks DL (1997b) Eye–head coordination during head-unrestrained gaze shifts in rhesus monkeys. J Neurophysiol 77:2328–2348

    PubMed  CAS  Google Scholar 

  • Freedman EG, Sparks DL (2000) Coordination of the eyes and head: movement kinematics. Exp Brain Res 131:22–32

    Article  PubMed  CAS  Google Scholar 

  • Freedman EG, Quessy S (2004) Electrical stimulation of rhesus monkey nucleus reticularis gigantocellularis II. Effects on metrics and kinematics of ongoing gaze shifts to visual targets. Exp Brain Res 156:357–376

    Article  PubMed  Google Scholar 

  • Freedman EG, Stanford TR, Sparks DL (1996) Combined eye–head gaze shifts produced by electrical stimulation of the superior colliculus in rhesus monkeys. J Neurophysiol 76:927–951

    PubMed  CAS  Google Scholar 

  • Freedman EG, Ling L, Fuchs AF (1998) Perturbing the head: the gain of reflex interactions during orienting eye–head movements. Abstract, Society for Neuroscience, vol 24, p 1412

  • Fuchs AF, Robinson DA (1966) A method for measuring horizontal and vertical eye movement chronically in the monkey. J Appl Physiol 21:1068–1070

    PubMed  CAS  Google Scholar 

  • Fuchs AF, Kaneko CRS, Scudder CA (1985) Brainstem control of saccadic eye movements. Ann Rev Neurosci 8:307–337

    Article  PubMed  CAS  Google Scholar 

  • Fuller JH (1992) Head movement propensity. Exp Brain Res 92:152–165

    Article  PubMed  CAS  Google Scholar 

  • Fuller JH (1996) Eye position and target amplitude effects on human visual saccadic latencies. Exp Brain Res 109:457–466

    Article  PubMed  CAS  Google Scholar 

  • Fuller JH, Maldonado H, Schlag J (1983) Vestibular–oculomotor interaction in cat eye–head movements. Brain Res 271:241–250

    Article  PubMed  CAS  Google Scholar 

  • Galiana HL, Guitton D (1992) Central organization and modeling of eye–head coordination during orienting gaze shifts. In: Cohen B, Tomko D, Guedry F (eds) Sensing and controlling motion. Ann N Y Acad Sci, New York, pp 452–471

    Google Scholar 

  • Gandhi NJ, Sparks DL (2007) Dissociation of eye and head components of gaze shifts by stimulation of the omnipause neuron region. J Neurophysiol 98:360–373

    Article  PubMed  Google Scholar 

  • Goossens HHLM, vanOpstal AJ (1997) Human eye–head coordination in two dimensions under different sensorimotor conditions. Exp Brain Res 114:542–560

    Article  PubMed  CAS  Google Scholar 

  • Guitton D, Volle M (1987) Gaze control in humans: eye–head coordination during orienting movements to targets within and beyond the oculomotor range. J Neurophysiol 58:427–439

    PubMed  CAS  Google Scholar 

  • Guitton D, Douglas RM, Volle M (1984) Eye–head coordination in cats. J Neurophysiol 52:1030–1050

    PubMed  CAS  Google Scholar 

  • Guitton D, Munoz DP, Gallana HL (1990) Gaze control in the cat: studies and modeling of the coupling between orienting eye and head movements in different behavioral tasks. J Neurophysiol 64:509–531

    PubMed  CAS  Google Scholar 

  • Hepp K, Henn V, Vilis T, Cohen B (1989) Brainstem regions related to saccade generation. Rev Oculomot Res 3:105–212

    PubMed  CAS  Google Scholar 

  • Isa T, Sasaki S (2002) Brainstem control of head movements during orienting; organization of the premotor circuits. Prog Neurobiol 66:205–241

    Article  PubMed  Google Scholar 

  • Judge SJ, Richmond BJ, Chu FC (1980) Implantation of magnetic search coils for measurement of eye position: an improved method. Vision Res 20:535–538

    Article  PubMed  CAS  Google Scholar 

  • Jürgens R, Becker W, Kornhuber HH (1981a) Natural and drug-induced variations of velocity and duration of human saccadic eye movements: evidence for a control of the neural pulse generator by local feedback. Biol Cybern 39:87–96

    Article  PubMed  Google Scholar 

  • Jürgens R, Becker W, Reiger P (1981b) Different effects involved in the interactions of saccades and the vestibulo-ocular reflex. In: Cohen B (ed) Vestibular and oculomotor physiology, vol 374. NY Acad Sci, New York, pp 744–754

    Google Scholar 

  • Keller EL (1991) The brainstem. In: Carpenter RHS (ed) Eye movements, vol 8. CRC Press, Boca Raton, pp 200–223

    Google Scholar 

  • Laurutis V, Robinson D (1986) The vestibulo-ocular reflex during human saccadic eye movements. J Physiol 373:209–233

    PubMed  CAS  Google Scholar 

  • Lee C (1999) Eye and head coordination in reading: roles of head movement and cognitive control. Vis Res 39:3761–3768

    Article  PubMed  CAS  Google Scholar 

  • Leigh RJ, Zee DS (1999) The neurology of eye movements. Oxford University Press, Oxford

    Google Scholar 

  • Lestienne F, Vidal PP, Berthoz A (1984) Gaze changing behaviour in head restrained monkey. Exp Brain Res 53:349–356

    Article  PubMed  CAS  Google Scholar 

  • Morasso P, Bizzi E, Dichgans J (1973) Adjustment of saccade characteristics during head movements. Exp Brain Res 16:492–500

    Article  PubMed  CAS  Google Scholar 

  • Moschner C, Zangmeister WH (1993) Preview control of gaze saccades: efficacy of prediction modulates eye–head interaction during human gaze saccades. Neurol Res 15:417–432

    Article  PubMed  CAS  Google Scholar 

  • Moschovakis AK (1994) Neural network simulations of the primate oculomotor system I. The vertical saccadic burst generator. Biol Cybern 70:291–302

    Article  PubMed  CAS  Google Scholar 

  • Pelisson D, Prablanc C, Urquizar C (1988) Vestibuloocular reflex inhibition and gaze saccade control characteristics during eye–head orientation in humans. J Neurophysiol 59:997–1013

    PubMed  CAS  Google Scholar 

  • Peterson BW, Richmond FJ (1988) Control of head movement. Oxford University Press, Oxford

    Google Scholar 

  • Phillips JO, Ling L, Fuchs AF, Seibold C, Plorde JJ (1995) Rapid horizontal gaze movement in the monkey. J Neurophysiol 73:1632–1652

    PubMed  CAS  Google Scholar 

  • Quessy S, Freedman EG (2004) Electrical stimulation of rhesus monkey nucleus reticularis gigantocellularis. Characteristics of evoked head movements I. Exp Brain Res 156:342–356

    Article  PubMed  Google Scholar 

  • Robinson DA (1964) The mechanics of human saccadic eye movement. J Physiol 174:245–264

    PubMed  CAS  Google Scholar 

  • Robinson DA (1970) Oculomotor unit behavior in the monkey. J Physiol 33:393–404

    CAS  Google Scholar 

  • Robinson DA (1973a) Models of the saccadic eye movement control system. Kybernetik 14:71–83

    Article  PubMed  CAS  Google Scholar 

  • Robinson DA (1973b) Oculomotor control system. Invest Ophthalmol 12:164–166

    PubMed  CAS  Google Scholar 

  • Robinson DA, O’Meara DM, Scott AB, Collins CC (1969) Mechanical components of human eye movements. J Appl Physiol 26:548–553

    PubMed  CAS  Google Scholar 

  • Roucoux A, Guitton D, Crommelinck M (1980) Stimulation of the superior colliculus in the alert cat. Exp Brain Res 39:75–85

    Article  PubMed  CAS  Google Scholar 

  • Roy JE, Cullen KE (1998) A neural correlate of vestibulo-ocular reflex suppression during voluntary eye–head gaze shifts. Nature Neurosci 1:404–410

    Article  PubMed  CAS  Google Scholar 

  • Scudder CA, Kaneko CRS, Fuchs AF (2002) The brainstem burst generator for saccadic eye movement: a modern synthesis. Exp Brain Res 142:439–462

    Article  PubMed  Google Scholar 

  • Sparks DL (1991) The neural control of orienting eye and head movements. In: Humphrey DR, Freund H-J (eds) Motor control: concepts and issues. Wiley, New York, pp 263–275

  • Sparks DL (2002) The brainstem control of saccadic eye movements. Nat Rev Neurosci 3:952–964

    Article  PubMed  CAS  Google Scholar 

  • Sparks DL, Hartwich-Young R (1989) The deep layers of the superior colliculus. Rev Oculomot Res 3:213–255

    PubMed  CAS  Google Scholar 

  • Sperry R (1950) Neural basis of the spontaneous optokinetic response produced by visual inversion. J Comp Physiol Psychol 43:482–489

    Article  PubMed  CAS  Google Scholar 

  • Stahl J (1999) Amplitude of human head movements associated with horizontal saccades. Exp Brain Res 126:41–54

    Article  PubMed  CAS  Google Scholar 

  • Tabak S, Smeets JBJ, Collewijn H (1996) Modulation of the human vestibuloocular reflex during saccades: probing by high frequency oscillation and torque pulses to the head. J Neurophysiol 76:3249–3263

    PubMed  CAS  Google Scholar 

  • Tomlinson RD (1990) Combined eye–head gaze shifts in primate III contributions to the accuracy of gaze saccades. J Neurophysiol 64:1873–1981

    PubMed  CAS  Google Scholar 

  • Tomlinson RD, Bahra PS (1986a) Combined eye–head gaze shifts in the primate I metrics. J Neurophysiol 56:1542–1557

    PubMed  CAS  Google Scholar 

  • Tomlinson RD, Bahra PS (1986b) Combined eye–head gaze shifts in the primate II. Interactions between saccades and the vestibuloocular reflex. J Neurophysiol 56:1558–1570

    PubMed  CAS  Google Scholar 

  • Tweed D, Glenn B, Vilis T (1995) Eye–head coordination during large gaze shifts. J Neurophysiol 73:766–799

    PubMed  CAS  Google Scholar 

  • vanGisbergen JAM, Robinson DA, Gielen SA (1981) A quantitative analysis of generation of saccadic eye movements by burst neurons. J Neurophysiol 45:417–442

    CAS  Google Scholar 

  • vanGisbergen JAM, vanOpstal J, Ottes FP (1984) Parametrization of saccadic velocity profiles in man. In: Gale AG, Johnson F (eds) Theoretical and applied aspects of eye movement research. Elsevier, New York, pp 87–94

    Chapter  Google Scholar 

  • vanOpstal AJ, vanGisbergen JAM (1987) Skewness of saccadic velocity profiles a unifying parameter for normal and slow saccades. Vision Res 27:731–745

    Article  CAS  Google Scholar 

  • Vidal PP, Roucoux A, Berthoz A (1982) Horizontal eye position-related activity in neck muscles of the alert cat. Exp Brain Res 46:448–453

    Article  PubMed  CAS  Google Scholar 

  • Volle M, Guitton D (1993) Human gaze shifts in which the head and eyes are not initially aligned. Exp Brain Res 94:463–470

    Article  PubMed  CAS  Google Scholar 

  • von Holst E, Mittelstaedt H (1971) The principle of reafferance: interactions between the central nervous system and the peripheral organs (translated by P.C. Dodwell and reprinted from Die Naturwissenschaften (1950)). In: Dodwell PC (ed) Perceptual processing: stimulus equivalence and pattern recognition. Appleton-Century-Crofts, New York, pp 41–71

    Google Scholar 

  • Zangemeister WH, Stark L (1981) Active head rotations and eye–head coordination. Ann N Y Acad Sci 374:540–559

    Article  PubMed  CAS  Google Scholar 

  • Zangemeister WH, Stark L (1982) Types of gaze movement: variable interactions of eye and head movements. Exp Neurol 77:563–577

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks the members of his lab at the University of Rochester: Dr. J. Quinet, Dr. S. Quessy, Dr. M. Walton, A. Cecala, and G. Parker. In addition the comments and suggestions of Prof. Patrick Haggard and two anonymous reviewers led to important improvements in this manuscript. The author is also indebted to Dr. David Sparks for his continuing intellectual contributions, encouragement and friendship. Supported in part by NIH Grants EY13239 and EY01319.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward G. Freedman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freedman, E.G. Coordination of the eyes and head during visual orienting. Exp Brain Res 190, 369–387 (2008). https://doi.org/10.1007/s00221-008-1504-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1504-8

Keywords

Navigation