Skip to main content
Log in

Shoot micro-distribution patterns in the Mediterranean seagrass Posidonia oceanica

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Posidonia oceanica meadows host a huge number of shoots and their dynamics is strictly related to the spatial distribution patterns of those shoots. To investigate the structure of P. oceanica meadows at very small spatial scale (i.e. in the 100–102 cm range), point patterns of shoot micro-distribution were analyzed. Spatial distribution of shoots was recorded by cutting all the leaves and by digitizing shoot location from pictures of square frames (1 m2) that were randomly positioned in seemingly uniformly dense stands. Ten frames were sampled, all from Southern Italian meadows, and the position of 7828 shoots was recorded. Nearest neighbour distance (NNd) statistics revealed recurring patterns at the different spatial scales: regular patterns were recognized among shoots at smaller spatial scale (100–101 cm), while aggregated shoot distribution emerged in the 101–102 cm range and an important stochastic component was observed at larger spatial scales. Reasons underpinning different spatial point patterns in P. oceanica meadows were discussed by relating the observed patterns to ecological processes (i.e. competition among shoots, role of “species-specific” drivers or “site-specific” features), also including relationships between shoot NNd and shoot density counts. The raw data, provided as supplementary material, are currently the first and the only source of information available about shoot spatial micro-distribution. In this regard, although our data set cannot represent the whole spectrum of variability in P. oceanica meadows, it can be regarded as a first step towards a better knowledge of small scale shoot point patterns in P. oceanica meadows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alcoverro T, Duarte CM, Romero J (1995) Annual growth dynamics of Posidonia oceanica: contribution of large-scale versus local factors to seasonality. Mar Ecol Prog Ser 120:203–210

    Article  Google Scholar 

  • Bacci T, Rende SF, Rocca D, Scalise S, Cappa P, Scardi M (2015) Optimizing Posidonia oceanica (L.) Delile shoot density: lessons learned from a shallow meadow. Ecol Indic 58:199–206

    Article  Google Scholar 

  • Bacci T, Penna M, Rende SF, Trabucco B, Gennaro P, Bertasi F, Marusso V, Grossi L, Cicero AM (2016) Effects of Costa Concordia shipwreck on epiphytic assemblages and biotic features of Posidonia oceanica canopy. Mar Pollut Bull 109:110–116

    Article  CAS  Google Scholar 

  • Baddeley A, Kerscher M, Schladitz K, Scott BT (2000) Estimating the J function without edge correction. Stat Neerl 54:315–328

    Article  Google Scholar 

  • Baddeley A, Rubak E, Turner R (2015) Spatial point patterns: methodology and applications with R. Chapman and Hall, London

    Google Scholar 

  • Balestri E, Cinelli F, Lardicci C (2003) Spatial variation in Posidonia oceanica structural, morphological and dynamic features in a northwestern Mediterranean coastal area: a multi-scale analysis. Mar Ecol Prog Ser 250:51–60

    Article  Google Scholar 

  • Bivand RS, Pebesma EJ, Gómez-Rubio V (2008) Applied spatial data analysis with R. Springer, The Netherlands

    Google Scholar 

  • Boudouresque CF, Jeudy de Grissac A (1983) L’herbier à Posidonia oceanica en Méditerranée: les interactions entre la plante et le sédiment. J Rech Océanogr 8:99–122

    Google Scholar 

  • Boudouresque CF and Meinesz A (1982) D’ecouverte de l’herbier de Posidonies. Cah Parc nation Port-Cros 4:1–79

    Google Scholar 

  • Boudouresque CF, Bernard G, Pergent G, Shili A, Verlaque M (2009) Regression of Mediterranean seagrasses caused by natural processes and anthropogenic disturbances and stress: a critical review. Bot Mar 52:395–418

    Article  Google Scholar 

  • Boudouresque CF, Bernard G, Bonhomme P, Charbonnel E, Diviacco G, Meinesz A, Pergent G, Pergent-Martini C, Ruitton S, Tunesi L (2012) Protection and conservation of Posidoniao ceanica meadows. RAMOGE and RAC/SPA publ, Tunis, p 1–202

  • Boudouresque CF, Pergent G, Pergent-Martini C, Ruitton S, Thibaut T, Verlaque V (2016) The necromass of the Posidonia oceanica seagrass meadow: fate, role, ecosystem services and vulnerability. Hydrobiologia 781:25–42

    Article  CAS  Google Scholar 

  • Buia MC, Zupo V, Mazzella L (1992) Primary production and growth dynamics in Posidonia oceanica. PSZNI Mar Ecol 13:1–16

    Article  Google Scholar 

  • Caye G (1980) Analyse du polymorphisme caulinaire chez Posidonia oceanica (L.) Del. Bull Soc Bot Fr 127:257–262

    Google Scholar 

  • Caye G (1982) Etude de la croissance de la posidonie, Posidonia oceanica (L.) Delile, formation des feuilles et croissance des tiges au cours d’une année. Tethys 10:229–235

    Google Scholar 

  • Den Hartog C (1971) The dynamic aspect in the ecology of seagrass communities. Thalass Jugosl 7:101–112

    Google Scholar 

  • Di Carlo G, Benedetti-Cecchi L, Badalamenti F (2011) Response of Posidonia oceanica growth to dredging effects of different magnitude. Mar Ecol Prog Ser 423:39–45

    Article  Google Scholar 

  • Duarte CM (1991) Seagrass depth limits. Aquat Bot 40:363–377

    Article  Google Scholar 

  • Duarte CM, Fourqurean JW, Krause-Jensen D, Olesen B (2006) Dynamics of seagrass stability and change. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrass: biology, ecology and conservation. Springer, Dordrecht, pp 271–294

    Google Scholar 

  • Dunstan PK, Johnson CR (2003) Competition coefficients in a marine epibenthic assemblage depend on spatial structure. Oikos 100:79–88

    Article  Google Scholar 

  • Efromovich S (1999) Nonparametric curve estimation: methods, theory and application. Springer, New York

    Google Scholar 

  • Fortin MJ, Dale MRT (2005) Spatial analysis: a guide for ecologists. Cambridge University Press, Cambridge

    Google Scholar 

  • Gacia E, Duarte CM (2001) Sediment retention by a Mediterranean Posidonia oceanica meadow: the balance between deposition and resuspension. Estuar Coast Shelf Sci 52:505–514

    Article  Google Scholar 

  • Giraud G (1977) Essai de classement des herbiers de Posidonia oceanica (Linné) Delile. Bot Mar 20:487–491

    Article  Google Scholar 

  • Gobert S, Kyramarios M, Lepoint G, Pergent-Martini C, Bouquegneau JM (2003) Variations à differentes échelles spatiales de l’herbier à Posidonia oceanica (L.) Delile; effet sur les paramètres physico-chimiques du sédiment. Oceanol Acta 26:199–207

    Article  CAS  Google Scholar 

  • Haase P, Pugnaire FI, Clark SC, Incoll LD (1996) Spatial patterns in a two tiered semi-arid shrubland in southeastern Spain. J Veg Sci 7:527–534

    Article  Google Scholar 

  • Kendrick GA, Marbà N, Duarte CM (2005a) Modelling formation of complex topography by the seagrass Posidonia oceanica. Estuar Coast Shelf Sci 65:717–725

    Article  Google Scholar 

  • Kendrick GA, Duarte CM, Marbà N (2005b) Clonality in seagrasses, emergent properties and seagrass landscapes. Mar Ecol Prog Ser 290:291–296

    Article  Google Scholar 

  • Leoni V, Pasqualini V, Pergent-Martini C, Vela A, Pergent G (2007) Physiological responses of Posidonia oceanica to experimental nutrient enrichment of the canopy water. J Exp Mar Biol Ecol 349:73–83

    Article  Google Scholar 

  • Lorenti M, Mazzella L, Buia MC (1995) Light limitation of Posidonia oceanica (L.) Delile growth at different depths. Rapp Comm Int Mer Médit 34:34

    Google Scholar 

  • Maestre FT, Escudero A, Martinez I, Guerrero C, Rubio A (2005) Does spatial pattern matter to ecosystem functioning? Insights from biological soil crusts. Funct Ecol 19:566–573

    Article  Google Scholar 

  • Marbà N, Duarte CM (1998) Rhizome elongation and seagrass clonal growth. Mar Ecol Prog Ser 174:269–280

    Article  Google Scholar 

  • Molenaar H, Barthélémy D, Reffye P, Meinesz A, Mialet I (2000) Modelling and growth patterns of Posidonia oceanica. Aquat Bot 66:85–99

    Article  Google Scholar 

  • Molinier R, Picard J (1952) Recherches sur les herbiers de phanérogames marines du littoral méditerranéen français. Ann Inst Oceanogr 27:157–234

    Google Scholar 

  • Montefalcone M, Vacchi M, Carbone C, Cabella R, Schiaffino CF, Elter FM, Morri C, Bianchi CN, Ferrari M (2016) Seagrass on the rocks:Posidonia oceanica settled on shallow-water hard substrata with stands wave stress beyond predictions. Estuar Coast Shelf Sci 180:114–122

    Article  CAS  Google Scholar 

  • Murrell DJ, Purves DW, Law R (2001) Uniting pattern and process in plant ecology. Trends Ecol Evol 16:529–553

    Article  Google Scholar 

  • Panayotidis P, Boudouresque CF, Marcot-Coqueugniot J (1980) Végétation marine de l’île de Port-Cros (Parc national). XX. Répartition spatiale des faisceaux des Posidonia oceanica (Linnaeus) Delile. Trav Sci Parc nation Port-Cros 6:223–237

    Google Scholar 

  • Panayotidis P, Boudouresque CF, Marcot-Coqueugniot J (1981) Microstructure de l’herbier à Posidonia oceanica (Linnaeus) Delile. Bot Mar 24:115–124

    Article  Google Scholar 

  • Pergent-Martini C, Pergent C (1996) Spatio-temporal dynamics of Posidonia oceanica beds near a seawage outfall (Mediterranean-France). Dredged and undredged sites in the Owen anchorage region of Southwestern Australia. In: Kuo J, Phillips RC, Walker DI, Kirkman H (eds) Proceedings of an international workshop on seagrass biology, Western Australia Museum, Perth, pp 299–306

  • Pergent-Martini C, Leoni V, Pasqualini V, Ardizzone GD, Balestri E, Bedini R, Belluscio A, Belsher T, Borg J, Boudouresque CF, Boumaza S, Bouquegneau JM, Buia MC, Calvo S, Cebrian J, Charbonnel E, Cinelli F, Cossu A, Di Maida G, Dural B, Francour P, Gobert S, Lepoint G, Meinesz A, Molenaar H, Mansour HM, Panayotidis P, Peirano A, Pergent G, Piazzi L, Pirrotta M, Relini G, Romero J, Sanchez-Lizaso JL, Semroud R, Shembri A, Shili A, Tomasello A, Velimirov B (2005) Descriptors of Posidonia oceanica meadows: use and application. Ecol Indic 5:213–230

    Article  Google Scholar 

  • Rayburn AP, Monaco TA (2011) Using a chronosequence to link plant spatial patterns and ecological processes in grazed Great Basin plant communities. Rangel Ecol Manag 64:276–282

    Article  Google Scholar 

  • Renton M, Airey M, Cambridge ML, Kendrick GA (2011) Modelling seagrass growth and development to evaluate transplanting strategies for restoration. Ann Bot 108:1213–1223

    Article  Google Scholar 

  • Romero J, Pergent G, Pergent-Martini C, Mateo MA, Regnier C (1992) The detritic compartment in a Posidonia oceanica meadow: litter features, decomposition rates and mineral stocks. PSZNI Mar Ecol 13:73–83

    Article  Google Scholar 

  • Romero J, Pérez M, Alcoverro T (2012) L’alguer de Posidonia oceanica de les illes Medes: més de trenta anys d’estudi. El fonsmarí de les illes Medes i el Mongrí. Quatredè cades de recerca per a la conservació. En: Hereu B, Quintana X (édit) Recerca i territori, vol. 4, Càtedra d’ecosistemes litorals mediterranis publ, L’Estartit, p 79–100

  • Schultz ST, Kruschel C, Bakran-Petricioli T, Petricioli D (2015) Error, power, and blind sentinels: The statistics of seagrass monitoring. PLoS One 10:e0138378

    Article  Google Scholar 

  • Spearman C (1904) The proof and measurement of association between two things. Am J Psychol 15:72–101

    Article  Google Scholar 

  • Stoll P, Prati D (2001) Intraspecific aggregation alters competitive interactions in experimental plant communities. Ecol 82:319–327

    Article  Google Scholar 

  • Szmyt J (2014) Spatial statistics in ecological analysis: from indices to functions. Silva Fenn 48:1–31.

    Article  Google Scholar 

  • Tilman D, Kareiva P (1997) The role of space in population dynamics and interspecific interactions. Princeton University Press, Princeton

    Google Scholar 

  • Tirado R, Pugnaire FI (2003) Shrub spatial aggregation and consequences for reproductive success. Oecologia 136:296–301

    Article  Google Scholar 

  • Turnbull LA, Coomes DA, Purves DW, Rees M (2007) How spatial structure alters population and community dynamics in a natural plant community. J Ecol 95:79–89

    Article  Google Scholar 

  • Van Lieshout MNM (2010) A J-function for inhomogeneous point processes. Stat Neerl 65:183–201

    Article  Google Scholar 

  • Van Lieshout MNM, Baddeley A (2006) A J-function for marked point patterns. Ann I Stat Math 58:235–259

    Article  Google Scholar 

  • van Rein HB, Brown C, Quinn R, Breen J (2009) A review of sublittoral monitoring methods in temperate waters: a focus on scale. Underw Technol 28:99–113

    Article  Google Scholar 

  • Velazquez E, Martinez I, Getzin S, Moloney KA, Wiegandl T (2016) An evaluation of the state of spatial point pattern analysis in ecology. Ecography 39:1042–1055

    Article  Google Scholar 

  • Waller L A, Gotway C A (2004) Applied spatial statistics for public health data. Wiley, Hoboken

    Book  Google Scholar 

  • Wiegand T and Moloney KA (2014) Handbook of spatial point-pattern analysis in ecology. CRC Press, Boca Raton

    Google Scholar 

  • Zupo V, Buia MC, Mazzella L (1997) A production simulation model for Posidonia oceanica based on temperature. Estuar Coast Shelf Sci 44:483–492

    Article  Google Scholar 

  • Zupo V, Mazzella L, Buia MC, Gambi MC, Lorenti M, Scipione MB, Cancemi G (2006) A small-scale analysis of the spatial structure of a Posidonia oceanica meadow off the Island of Ischia (Gulf of Naples, Italy): relationship with the seafloor morphology. Aquat Bot 84:101–109

    Article  Google Scholar 

Download references

Acknowledgements

All our thanks to the “R Development Core Team” and to the authors of various Statistical Packages utilized and downloaded from the CRAN (Comprehensive R Archive Network). The authors wish to thank the personnel of the MPA of Capo Rizzuto and Marine Park of Riviera dei Cedri for rendering this investigation possible, Claudio Bacci for assistance in the development of the sampling methodology, Domenico Rocca and Ezio Zito for their collaboration in scuba diving data collection and two anonymous reviewers and the associate editor for their comments, which improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiziano Bacci.

Ethics declarations

All plant experiments were done with permission from the Marine Protected Area of Capo Rizzuto and the Marine Park of Riviera dei Cedri.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: P. Kraufvelin.

Reviewed by M. Montefalcone and an undisclosed expert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 205 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bacci, T., Rende, F.S. & Scardi, M. Shoot micro-distribution patterns in the Mediterranean seagrass Posidonia oceanica . Mar Biol 164, 85 (2017). https://doi.org/10.1007/s00227-017-3121-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-017-3121-1

Keywords

Navigation