Skip to main content
Log in

Once-daily 1 g ceftriaxone optimizes exposure in patients with septic shock and hypoalbuminemia receiving continuous veno-venous hemodiafiltration

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Ceftriaxone total and unbound pharmacokinetics (PK) can be altered in critically ill patients with septic shock and hypoalbuminemia receiving continuous veno-venous hemodiafiltration (CVVHDF). The objective of this study was to determine the dosing strategy of ceftriaxone that maximizes the probability of maintaining the concentration above the MIC of the susceptible bacteria (≤2 mg/L by the EUCAST) for a 100% of the dosing interval (100% ƒuT>MIC).

Methods

In a prospective PK study in the intensive care units of two tertiary Spanish hospitals, six timed blood samples were collected per patient; for each sample, ceftriaxone total and unbound concentrations were measured using a liquid chromatography coupled to tandem mass spectrometry method. Population PK analysis and Monte-Carlo simulations were performed using NONMEMv.7.3®.

Results

We enrolled 8 critically ill patients that met the inclusion criteria (47 blood samples). Median age (range) was 70 years (47-85), weight 72.5 kg (40-95), albumin concentration 24.2 g/L (22-34), APACHE II score at admission 26 (17-36), and SOFA score on the day of study 12 (9-15). The unbound fraction (ƒu) of ceftriaxone was 44%, and total CL was 1.27 L/h, 25-30% higher than the CL reported in septic critically ill patients not receiving renal replacement therapies, and dependent on albumin concentration and weight. Despite this increment in ƒu and CL, Monte-Carlo simulations showed that a dose of 1 g once-daily ceftriaxone is sufficient to achieve a 100% ƒuT>MIC for MICs ≤2 mg/L for any range of weight and albumin concentration.

Conclusion

Once-daily 1 g ceftriaxone provides optimal exposure in critically ill patients with septic shock and hypoalbuminemia receiving CVVHDF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Research data are not shared.

References

  1. Mensa J, Soriano A, García-Sánchez JE, Letang E, López E, Marco F, Llinares P, Barberán P (2020) Mensa-Gatell. Guía de terapéutica antimicrobiana 2020. Escofet-Zamora editions, Molins de Rei, Spain

  2. Lindsay Grayson M (2010) The use of antibiotics, 6th edn. American Society for Microbiology Press, Hodder Arnold, London

    Google Scholar 

  3. Meyers B, Srulevitch E, Jacobson J, Hirschman S (1983) Crossover study of the pharmacokinetics of ceftriaxone administered intravenously or intramuscularly to healthy volunteers. Antimicrob Agents Chemother 24(24):812–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Joynt GM, Lipman J, Gomersall CD, Young RJ, Wong EL, Gin T (2001) The pharmacokinetics of once-daily dosing of ceftriaxone in critically ill patients. J Antimicrob Chemother 47(4):421–429

    Article  CAS  PubMed  Google Scholar 

  5. Food and Drug Administration Rocephin product information. Retrieved from www.fda.gov/drugs. Acessed on January 2021

  6. Craig WA (1998) Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 26(1):1–10. https://doi.org/10.1086/516284

    Article  CAS  PubMed  Google Scholar 

  7. Drusano GL (2004) Antimicrobial pharmacodynamics: critical interactions of ‘bug and drug’. Nat Rev Microbiol 2(4):289–300. https://doi.org/10.1038/nrmicro862

    Article  CAS  PubMed  Google Scholar 

  8. Wong G, Taccone F, Villois P, Scheetz M, Rhodes N, Briscoe S, McWhinney B, Nunez-Nunez M, Ungerer J, Lipman J, Roberts J (2020) b-Lactam pharmacodynamics in Gram-negative bloodstream infections in the critically ill. J Antimicrob Chemother 75(2):429–433. https://doi.org/10.1093/jac/dkz437

    Article  CAS  PubMed  Google Scholar 

  9. Joukhadar C, Frossard M, Mayer BX, Brunner M, Klein N, Siostrzonek P, Eichler HG, Muller M (2001) Impaired target site penetration of beta-lactams may account for therapeutic failure in patients with septic shock. Crit Care Med 29(2):385–391. https://doi.org/10.1097/00003246-200102000-00030

    Article  CAS  PubMed  Google Scholar 

  10. Varghese JM, Jarrett P, Wallis SC, Boots RJ, Kirkpatrick CM, Lipman J, Roberts JA (2015) Are interstitial fluid concentrations of meropenem equivalent to plasma concentrations in critically ill patients receiving continuous renal replacement therapy? J Antimicrob Chemother 70(2):528–533. https://doi.org/10.1093/jac/dku413

    Article  CAS  PubMed  Google Scholar 

  11. Bagshaw SM, Uchino S, Bellomo R, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, Oudemans-van Straaten HM, Ronco C, Kellum JA, Beginning, Ending Supportive Therapy for the Kidney I (2007) Septic acute kidney injury in critically ill patients: clinical characteristics and outcomes. Clin J Am Soc Nephrol 2(3):431–439. https://doi.org/10.2215/CJN.03681106

    Article  PubMed  Google Scholar 

  12. Ulldemolins M, Vaquer S, Llaurado-Serra M, Pontes C, Calvo G, Soy D, Martin-Loeches I (2014) Beta-lactam dosing in critically ill patients with septic shock and continuous renal replacement therapy. Crit Care 18(3):227. https://doi.org/10.1186/cc13938

    Article  PubMed  PubMed Central  Google Scholar 

  13. Finfer S, Bellomo R, McEvoy S, Lo SK, Myburgh J, Neal B, Norton R, Investigators SS (2006) Effect of baseline serum albumin concentration on outcome of resuscitation with albumin or saline in patients in intensive care units: analysis of data from the saline versus albumin fluid evaluation (SAFE) study. BMJ 333(7577):1044. https://doi.org/10.1136/bmj.38985.398704.7C

    Article  CAS  PubMed  Google Scholar 

  14. Ulldemolins M, Roberts JA, Rello J, Paterson DL, Lipman J (2011) The effects of hypoalbuminaemia on optimizing antibacterial dosing in critically ill patients. Clin Pharmacokinet 50(2):99–110. https://doi.org/10.2165/11539220-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  15. European Committee on Antimicrobial Susceptibility Testing (EUCAST) Clinical Breakpoints. Retrieved from http://www.eucast.org. Acessed on January 2021

  16. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC (2016) The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315(8):801–810. https://doi.org/10.1001/jama.2016.0287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li AM, Gomersall CD, Choi G, Tian Q, Joynt GM, Lipman J (2009) A systematic review of antibiotic dosing regimens for septic patients receiving continuous renal replacement therapy: do current studies supply sufficient data? J Antimicrob Chemother 64(5):929–937. https://doi.org/10.1093/jac/dkp302

    Article  CAS  PubMed  Google Scholar 

  18. Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985) APACHE II: a severity of disease classification system. Crit Care Med 13(10):818–829

    Article  CAS  PubMed  Google Scholar 

  19. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, Reinhart CK, Suter PM, Thijs LG (1996) The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med 22(7):707–710. https://doi.org/10.1007/BF01709751

    Article  CAS  PubMed  Google Scholar 

  20. Beal S, Sheiner LB, Boeckmann A (2009) Bauer RJ NONMEM User’s Guides. (1989-2009), Icon Development Solutions, Ellicott City, MD, USA

  21. Ette EI, Ludden TM (1995) Population pharmacokinetic modeling: the importance of informative graphics. Pharm Res 12(12):1845–1855

    Article  CAS  PubMed  Google Scholar 

  22. Sheiner L, Wakefield J (1999) Population modelling in drug development. Stat Methods Med Res 8(3):183–193

    Article  CAS  PubMed  Google Scholar 

  23. Hooker AC, Staatz CE, Karlsson MO (2007) Conditional weighted residuals (CWRES): a model diagnostic for the FOCE method. Pharm Res 24(12):2187–2197. https://doi.org/10.1007/s11095-007-9361-x

    Article  CAS  PubMed  Google Scholar 

  24. Savic RM, Karlsson MO (2009) Importance of shrinkage in empirical bayes estimates for diagnostics: problems and solutions. AAPS J 11(3):558–569. https://doi.org/10.1208/s12248-009-9133-0

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bergstrand M, Hooker AC, Wallin JE, Karlsson MO (2011) Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J 13(2):143–151. https://doi.org/10.1208/s12248-011-9255-z

    Article  PubMed  PubMed Central  Google Scholar 

  26. Efron B (1979) Bootstrap methods: another look at the jacknife. Ann Stat 7:1–26

    Article  Google Scholar 

  27. Garot D, Respaud R, Lanotte P, Simon N, Mercier E, Ehrmann S, Perrotin D, Dequin PF, Le Guellec C (2011) Population pharmacokinetics of ceftriaxone in critically ill septic patients: a reappraisal. Br J Clin Pharmacol 72(5):758–767. https://doi.org/10.1111/j.1365-2125.2011.04005.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tsai D, Stewart P, Goud R, Gourley S, Hewagama S, Krishnaswamy S, Wallis SC, Lipman J, Roberts JA (2016) Total and unbound ceftriaxone pharmacokinetics in critically ill Australian Indigenous patients with severe sepsis. Int J Antimicrob Agents 48(6):748–752. https://doi.org/10.1016/j.ijantimicag.2016.09.021

    Article  CAS  PubMed  Google Scholar 

  29. Schleibinger M, Steinbach CL, Topper C, Kratzer A, Liebchen U, Kees F, Salzberger B, Kees MG (2015) Protein binding characteristics and pharmacokinetics of ceftriaxone in intensive care unit patients. Br J Clin Pharmacol 80(3):525–533. https://doi.org/10.1111/bcp.12636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kroh UF, Lennartz H, Edwards DJ, Stoeckel K (1996) Pharmacokinetics of ceftriaxone in patients undergoing continuous veno-venous hemofiltration. J Clin Pharmacol 36(12):1114–1119. https://doi.org/10.1002/j.1552-4604.1996.tb04164.x

    Article  CAS  PubMed  Google Scholar 

  31. Lau AH, Pyle K, Kronfol NO, Libertin CR (1989) Removal of cephalosporins by continuous arteriovenous ultrafiltration (CAVU) and hemofiltration (CAVH). Int J Artif Organs 12(6):379–383

    Article  CAS  PubMed  Google Scholar 

  32. Golper TA, Bennett WM (1988) Drug removal by continuous arteriovenous haemofiltration. A review of the evidence in poisoned patients. Med Toxicol Adverse Drug Exp 3(5):341–349

    CAS  PubMed  Google Scholar 

  33. Ebisch R, Meenks S, Foudraine N, Janssen P, le Noble J (2020) Ceftriaxone dosing in a critically ill patient with hypoalbuminemia during continuous venous hemofiltration: emphasis on unbound pharmacokinetics. J Clin Pharmacol 60(1):140–142. https://doi.org/10.1002/jcph.1503

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work has been supported by a grant from the Spanish Ministry of Health, Social Policies and Equality (Ministerio de Sanidad, Servicios Sociales y Igualdad), Government of Spain, project grant number EC11-159. Marta Ulldemolins has been supported in part by this project grant.

Author information

Authors and Affiliations

Authors

Contributions

MU, IML, and DS designed the study and wrote the study protocol. MU, MLS, JRB, and AR performed sample and data collection. MU, CB, CC, and DS developed data analysis. MU, CB, IML, and DS drafted the manuscript. All authors critically reviewed the manuscript, and approved the final version.

Corresponding author

Correspondence to Marta Ulldemolins.

Ethics declarations

Preliminary results of this research were presented in the “XIII Jornadas en Modelización y Simulación en Biomedicina 2020” (25-26th November 2020) as an oral communication.

Ethics approval and consent to participate

The study was conducted following the Declaration of Helsinki guidelines. Authorization for the study was granted by the Spanish Regulatory Medicines Agency (code IEM-ANT-2012-1) and ethical approval was obtained from the local ethics committees. Written informed consent was obtained from each patient’s legally authorized representative.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Figure 1S

Scatterplot of the relationship between total ceftriaxone concentration (mg/L) and unbound fraction (ƒu). (PNG 274 kb)

Figure 2S

Scatterplot of the relationship between albumin plasma concentrations (g/L) and unbound ceftriaxone fraction (ƒu). (PNG 272 kb)

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulldemolins, M., Bastida, C., Llauradó-Serra, M. et al. Once-daily 1 g ceftriaxone optimizes exposure in patients with septic shock and hypoalbuminemia receiving continuous veno-venous hemodiafiltration. Eur J Clin Pharmacol 77, 1169–1180 (2021). https://doi.org/10.1007/s00228-021-03100-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-021-03100-5

Keywords

Navigation