Skip to main content
Log in

Functional Consequences of Oxidative Membrane Damage

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The interaction of reactive oxygen species with biological membranes is known to produce a great variety of different functional modifications. Part of these modifications may be classified as direct effects. They are due to direct interaction of the reactive species with the molecular machinery under study with a subsequent chemical and functional modification of these molecules. An important part of the observed functional modifications are, however, indirect effects. They are the consequence of an oxidative modification of the environment of biological macromolecules. Lipid peroxidation—via its generation of chemically reactive products—contributes to the loss of cellular functions through the inactivation of membrane enzymes and even of cytoplasmic (i.e., water soluble) proteins. Oxidation of membrane lipids may, however, also increase the efficiency of membrane functions. This was observed for a series of transport systems. Lipid peroxidation was accompanied by activation of certain types of ion channels and ion carriers. The effect is due to an increase of the polarity of the membrane interior by accumulation of polar oxidation products. The concomitant change of the dielectric constant, which may be detected via the increase of the membrane capacitance, facilitates the opening of membrane channels and lowers the inner membrane barrier for the movement of ions across the membrane. The predominant effect, however, at least at a greater extent of lipid peroxidation, is the inhibition of membrane functions. The strong increase of the leak conductance contributes to the depolarization of the membrane potential, it destroys the barrier properties of the membrane and it may finally lead, via an increase of cytoplasmic Ca2+ concentration, to cell death. The conclusions were derived from experiments performed with different systems: model systems in planar lipid membranes, native ion channels either reconstituted in lipid membranes or investigated in their natural environment by the patch-clamp method, and two important ion pumps, the Na/K-ATPase and the sarcoplasmic reticulum (SR) Ca-ATPase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Fig 6
Fig 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. Barber D.J.W., Thomas J.K. 1978. Reactions of radicals with lecithin bilayers. Rad. Res. 74:51–65

    Google Scholar 

  2. Barth C., Stark G. 1991. Radiation inactivation of ion channels formed by gramicidin A. Protection by lipid double bonds and by α-tocopherol. Biochim. Biophys. Acta 1066:54–58

    PubMed  Google Scholar 

  3. Barth C., Stark G., Wilhelm M. 1993. Inactivation by ionizing radiation of ion channels formed by polyene antibiotics amphotericin B and nystatin in lipid membranes: An inverse dose rate behavior. Biophys. J. 64:92–97

    PubMed  Google Scholar 

  4. Ben-Hur E. 1992. Basic photobiology and mechanism of action of phthalocyanines. In: B.W. Henderson TJ. Dougherty, editors Photodynamic Therapy, Basic Principles and Clinical Applications, Marcel Dekker, New York pp. 63–77

    Google Scholar 

  5. Ben-Hur E., Dubbelman T.M.A.R. 1993. Cytoplasmic free calcium changes as a trigger mechanism in the response of cells to photosensitization. Photochem. Photobiol. 58:890–894

    PubMed  Google Scholar 

  6. Bolard, J. 1986. How do polyene macrolide antibiotics affect the cellular membrane properties?. Biochim. Biophys. Acta 864:257–304

    PubMed  Google Scholar 

  7. Boldyrev A., Kurella E. 1996. Mechanism of oxidative damage of dog kidney Na/K-ATPase. Biochem. Biophys. Res. Commun. 222:483–487

    Article  PubMed  Google Scholar 

  8. Bonnet, R. 1995. Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chem. Soc. Rev. 24:40–59

    Google Scholar 

  9. Brajtburg J., Powderly W.G., Kobayashi G.S., Medoff G. 1990. Amphotericin B: Current understanding of the mechanism of action. Antimicrob. Agents Chemother. 34:183–188

    PubMed  Google Scholar 

  10. Braughler J.M., Hall E.D. 1989. Central nervous system trauma and stroke. I. Biochemical considerations for oxygen radical formation and lipid peroxidation. Free Rad. Biol. Med. 6:289–301

    Article  PubMed  Google Scholar 

  11. Brown S.A., Hall E.D. 1992. Role of oxygen-derived free radicals in the pathogenesis of shock and trauma, with focus on central nervous system injuries. J. Am. Vet. Med. Assoc. 200:1849–1859

    PubMed  Google Scholar 

  12. Bruch R.C., Thayer W.S. 1983. Differential effect of lipid peroxidation on membrane fluidity as determined by electron spin resonance probes. Biochim. Biophys. Acta 733:216–222

    PubMed  Google Scholar 

  13. Busath D.D., Waldbillig R.C. 1983. Photolysis of gramicidin A channels in lipid bilayers. Biochim. Biophys. Acta 736:28–38

    Google Scholar 

  14. Busath D.D., Hayon E. 1988. Ultraviolet flash photolysis of gramicidin-doped lipid bilayers. Biochim. Biophys. Acta. 944:73–78

    PubMed  Google Scholar 

  15. Busath D.D. 1993. The use of physical methods in determining gramicidin channel structure and function. Annu. Rev. Physiol. 55:473–501

    Article  PubMed  Google Scholar 

  16. Buxton G.V. 1987. Radiation Chemistry of the Liquid State: (1) Water and homogeneous aqueous solutions. In: M.A.J. Rodgers, editors Radiation Chemistry. Farhataziz, VCH Verlagsgesellschaft, Weinheim pp. 321–349

    Google Scholar 

  17. Chen J.W., Zhang L., Lian X., Hwang F. 1992. Effect of hydroxyl radical on Na+-K+-ATPase activity of the brain microsomal membranes. Cell. Bibl. Int. Rep. 16:927–936

    PubMed  Google Scholar 

  18. Chung S.H., Kuyucak S. 2002. Recent advances in ion channel research. Biochim. Biophys. Acta 1565:267–86

    PubMed  Google Scholar 

  19. Crompton N.E.A., Zolzer F., Schneider E., Kiefer J. 1985. Increased mutant induction by very low dose-rate y-irradiation. Naturwiss. 72:439–440

    Article  PubMed  Google Scholar 

  20. De Kruiff B., Demel R.A. 1974. Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. II. Molecular structure of the polyene antibiotic-cholesterol complexes. Biochim. Biophys. Acta 339:57–70

    PubMed  Google Scholar 

  21. Dolmans D.E.J.G.J., Fukumura D., Jain R.K. 2003. Photodynamic therapy for cancer. Nature Reviews Cancer 3:380–387

    Article  PubMed  Google Scholar 

  22. Dougherty T.J., Gomer C.J., Henderson B.W., Jori G., Kessel D., Korbelik M., Moan J., Peng Q. 1998. Photodynamic therapypJ. Nat. Cancer Inst. 90:889–905

    Article  PubMed  Google Scholar 

  23. Elmoselhi A.B., Butcher A., Samson S.E., Grover A.K. 1994. Free radicals uncouple the sodium pump in pig coronary artery. Am. J. Physiol. 266:C720–C728

    PubMed  Google Scholar 

  24. Esterbauer EL, Schaur R.J., Zollner H. 1991. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Rad. Biol. Med. 11:81–128

    Article  PubMed  Google Scholar 

  25. Favero T.G., Zable A.C., Abramson J.J. 1995. Hydrogen peroxide stimulates the Ca2+ release channel from skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 270:25557–25563

    Article  PubMed  Google Scholar 

  26. Favero T.G., Webb J., Papiez M., Fisher E., Trippichio R.J., Broide M., Abramson J.J. 2003. Hypochlorous acid modifies calcium release channel function from skeletal muscle sarcoplasmic reticulum. J. Appl. Physiol. 94:1387–1394

    PubMed  Google Scholar 

  27. Filipovic D.M., Reeves W.B. 1997. Hydrogen peroxide activates glibenclamide-sensitive K+-channel in LLC-PK1 cells. Am. J. Physiol. 272:C737–C743

    PubMed  Google Scholar 

  28. Finkelstein A., Holz R. 1973. Aqueous pores created in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. In: G. Eisenman, editor Membranes. Vol 2, Marcel Dekker, New York pp. 377–408

    Google Scholar 

  29. Foote C.S. 1976. Photosensitized oxidation and singlet oxygen. In: W.A. Pryor, editor Free Radicals in Biology. Vol. 2, Academic Press, New York pp. 85–133

    Google Scholar 

  30. Foote C.S. 1991. Definition of type I and type II photosensitized oxidation. Photochem. Photobiol. 54:659

    PubMed  Google Scholar 

  31. Frankel E.N. 1984. Chemistry of free radical and singlet oxidation of lipids. Prog. Lipid Res. 23:197–221

    Article  PubMed  Google Scholar 

  32. Frankel E.N. 1987. Secondary products of lipid oxidation. Chem. Phys. Lipids. 44:73–85

    Article  PubMed  Google Scholar 

  33. Gardener H.W. 1989. Oxygen radical chemistry of polyunsaturated fatty acids. Free Rad. Biol. Med. 7:65–86

    Article  PubMed  Google Scholar 

  34. Girotti A.W. 1990. Photodynamic lipid peroxidation in biological systems. Photochem. Photobiol. 51:497–509

    PubMed  Google Scholar 

  35. Girotti A.W. 2001. Photosensitized oxidation of membrane lipids: reaction pathways, cytotoxic effects, and cytoprotective mechanisms. J. Photochem. Photobiol. B 63:103–113

    Article  PubMed  Google Scholar 

  36. Grossweiner L.I., Goyal G.C. 1984. Photosensitization of liposomes by porphyrins. J. Photochem. 25:253–265

    Article  Google Scholar 

  37. Hall E.D., Braughler J.M. 1989. Central nervous system trauma and stroke, II. Physiological and pharmacological evidence for involvement of oxygen radicals and lipid peroxidation. Free Rad. Biol. Med. 6:303–313

    Article  PubMed  Google Scholar 

  38. Halliwell B., Gutteridge J.M.C. 1999. Free Radicals in Biology and Medicine. Oxford University Press, Oxford

    Google Scholar 

  39. Haydon D.A., Hladky S.B. 1972. Ion transport across thin lipid membranes: a critical discussion of mechanisms in selected systems. Quart. Rev. Biophys. 5:187–282

    Google Scholar 

  40. Hitschke K., Buhler R., Apell H.-J., Stark G. 1994. Inactivation of the Na, K-ATPase by radiation-induced free radicals. Evidence for a radical-chain mechanism. FEES Lett. 353:297–300

    Article  PubMed  Google Scholar 

  41. Holmberg S.R.M., Gumming D.V.E., Kusama Y., Hearse D.J., Poole-Wilson P.A., Shattock MJ, Williams AJ. 1991. Reactive oxygen species modify the structure and function of the cardiac sarcoplasmic reticulum calcium-release channel. Cardioscience 2:19–25

    PubMed  Google Scholar 

  42. Huang W.H., Wang Y., Askari A., Zolotarjova N., Ganjeizadeh M. 1994. Different sensitivities of the Na+/K+-ATPase isoforms to oxidants. Biochim. Biophys. Acta 1190:108–114

    PubMed  Google Scholar 

  43. Ishibashi T., Lee C.I., Okabe E. 1996. Skeletal sarcoplasmic reticulum dysfunction induced by reactive oxygen intermediates derived from photoactivated rose bengal. J. Pharmacol. Exp. Ther. 277:350–358

    PubMed  Google Scholar 

  44. Jones D., Hayon E., Busath D. 1986. Tryptophan photolysis is responsible for gramicidin-channel inactivation by ultraviolet light. Biochim. Biophys. Acta. 861:62–66

    PubMed  Google Scholar 

  45. Kappus H. 1985. Lipid peroxidation: mechanism, analysis, enzymology and biological relevance. In: H. Sies, editor Oxidative Stress, Academic Press, London pp. 273–310

    Google Scholar 

  46. Kato K., Shao Q., Elimban V., Lukas A., Dhalla N.S. 1998. Mechanism of depression in cardiac sarcolemmal Na+-K+-ATPase by hypochlorous acid. Am. J. Physiol. 275:C826–C831

    PubMed  Google Scholar 

  47. Killian J.A. 1992. Gramicidin and gramicidin-lipid interactions. Biochim. Biophys. Acta 1113:391–425

    PubMed  Google Scholar 

  48. Kleinberg M.E., Finkelstein A. 1984. Single-length and double-length channels formed by nystatin in lipid bilayer membranes. J. Membrane Biol. 80:257–269

    Article  Google Scholar 

  49. Killig F., Kunz L., Stark G. 2001. Photomodification of the electrical properties of the plasma membrane: a comparison between 6 different membrane-active photosensitizers. J. Membrane Biol. 181:41–46

    Google Scholar 

  50. Killig E, Stark G. 2002. Photodynamic activation of ion transport through lipid membranes and its correlation with an increased dielectric constant of the membrane. Biochim. Biophys. Acta, 1564:207–213

    PubMed  Google Scholar 

  51. Killig E, Stark G., Apell H-J. 2004. Photodynamic inactivation of the Na, K-ATPase occurs along two different pathways. J. Membrane Biol. 200:133–144

    Article  Google Scholar 

  52. Kochevar IE., Bouvier J., Lynch M., Lin C.-W. 1994. Influence of dye and protein location on photosensitization of the plasma membrane. Biochim. Biophys. Acta 1196:172–180

    PubMed  Google Scholar 

  53. Koeppe R.E., Andersen O.S. 1996. Engineering the gramicidin channel, Annu. Rev. Biophys. Biomol. Struct. 25:231–258

    Article  Google Scholar 

  54. Koliwad S.K., Kunze D.L., Elliott S.J. 1996. Oxidant stress activates a non-selective cation channel responsible for membrane depolarisation in calf vascular endothelial cells. J. Physiol. 491:1–12

    PubMed  Google Scholar 

  55. Koufen P., Zeidler U., Stark G. 1997. Photodynamic inactivation of ion channels formed by the polyene antibiotic amphotericin B in lipid membranes. J. Photochem. Photobiol. 38:129–135

    Article  Google Scholar 

  56. Koufen P., Rück A., Brdiczka D., Wendt S., Wallimann T., Stark G. 1999. Free radical induced inactivation of creatine kinase: influence on the octameric and dimeric states of the mitochondrial enzyme (Mib-CK). Biochem. J. 344:413–417

    Article  PubMed  Google Scholar 

  57. Koufen P., Stark G. 2000. Free radical induced inactivation of creatine kinase: sites of interaction, protection, and recovery. Biochim. Biophys. Acta 1501:44–50

    PubMed  Google Scholar 

  58. Koufen P., Brdiczka D., Stark G. 2000. Inverse dose rate effects at the level of proteins observed in the presence of lipids. Int. J. Radiat. Biol. 76:625–631

    Article  PubMed  Google Scholar 

  59. Kourie J.I. 1998. Interaction of reactive oxygen species with ion transport mechanisms. Am. J. Physiol. 44:C1–C24

    Google Scholar 

  60. Kunz L., Zeidler U., Hagele K., Przybylski M., Stark G. 1995. Photodynamic and radiolytic inactivation of ion channels formed by gramicidin A: oxidation and fragmentation. Biochemistry 34:11895–11903

    Article  PubMed  Google Scholar 

  61. Kunz L., Stark G. 1997. Photodynamic membrane damage at the level of single ion channels. Biochim. Biophys. Acta 1327:1–4

    PubMed  Google Scholar 

  62. Kunz L., Stark G. 1998. Photofrin II sensitized modifications of ion transport across the plasma membrane of an epithelial cell line. II. Electrical measurements at the whole-cell level. J. Membrane Biol. 166:179–185

    Article  Google Scholar 

  63. Kunz L., Stark G. 1998. Photofrin II sensitized modifications of ion transport across the plasma membrane of an epithelial cell line. II. Analysis at the level of membrane patches. J. Membrane Biol. 166:187–196

    Article  Google Scholar 

  64. Kunz L., v. Weizsäcker P., Mendez P., Stark G. 1999. Radiolytic and photodynamic modifications of ion transport through the plasma membrane of OK-cells: a comparison. Int. J. Radiat. Biol. 75:1029–1034

    Article  PubMed  Google Scholar 

  65. Kuo S.S., Saad A.H., Koong A.C., Hahn G.M., Giaccia A.J. 1993. Potassium-channel activation in response to low doses of γ-irradiation involves reactive oxygen intermediates in nonexcitatory cells. Proc. Natl. Acad. Sci. USA 90:908–912

    PubMed  Google Scholar 

  66. Lin P., Girotti A.W. 1993. Photodynamic action of merocyanine 540 on leukemia cells: iron-stimulated lipid peroxidation and cell killing. Arch. Biochem. Biophys. 300:714–723

    Article  PubMed  Google Scholar 

  67. Mense M., Stark G., Apell H.-J. 1997. Effects of free radicals on partial reactions of the Na,K-ATPase. J. Membrane Biol. 156:63–71

    Article  Google Scholar 

  68. Min J., Woo Lee C., Bock Gu M. 2003. Gamma-radiation dose-rate effects on DNA damage and toxicity in bacterial cells. Radiat. Environ. Biophys. 42:189–192

    Article  PubMed  Google Scholar 

  69. Mishra O.P., Delivoria-Papadopoulos M., Cahillane G., Wagerle L.C. 1989. Lipid peroxidation as the mechanism of modification of the affinity of the Na+,K+-ATPase active sites for ATP, K+, Na+, and strophanthidin in vitro. Neurochem. Res. 14:845–851

    Article  PubMed  Google Scholar 

  70. Moller P., Wallin H. 1998. Adduct formation, mutagenesis and nucleotide excision repair of DNA damage produced by reactive oxygen species and lipid peroxidation product. Mutation Res. 410:271–279

    Article  PubMed  Google Scholar 

  71. Moor A.C., Lagerberg J.W., Tijssen K., Foley S., Truscott T.G., Kochevar IE., Brand A., Dubbelman T.M., VanSteveninck J. 1997. In vitro fluence rate effects in photodynamic reactions with AJPcS4 as sensitizer. Photochem. Photobiol. 66:860–865

    PubMed  Google Scholar 

  72. Moore J.V., West C.M.L., Whitehurst C. 1997. The biology of photodynamic therapy. Phys. Med. Biol. 42:913–935

    Article  PubMed  Google Scholar 

  73. Neckers D.C. 1989. Rose bengal. J. Photochem. Photobiol. A 47:1–29

    Article  Google Scholar 

  74. Ochsner, M. 1997. Photophysical and photobiological processes in the photodynamic therapy of tumours. J. Photochem. Photobiol. B: Biol. 39:1–18

    Article  Google Scholar 

  75. Oxford G.S., Pooler J.P., Narahashi T. 1977. Internal and external application of photodynamic sensitizers on squid giant axons. J. Membrane Biol. 36:159–173

    Article  Google Scholar 

  76. Parsegian, A. 1969. Energy of an ion crossing a low dielectric membrane: solutions to four relevant electrostatic problems. Nature 221:844–846

    PubMed  Google Scholar 

  77. Penning L.C., Dubbelman T.M.A.R. 1994. Fundamentals of photodynamic therapy: cellular and biochemical aspects. Anti-Cancer Drugs 5:139–146

    PubMed  Google Scholar 

  78. Penning L.C., Tijssen K., VanSteveninck J., Dubbehnan T.M. 1994. Hematoporphyrin derivative-induced photodynamic inhibition of Na+/K+-ATPase in L929 fibroblasts, Chinese hamster ovary cells and T24 human bladder transitional carcinoma cells. Photochem. Photobiol. 59:336–341

    PubMed  Google Scholar 

  79. Pooler, J. 1968. Light-induced changes in dye-treated lobster giant axons. Biophys. J. 8:1009–1026

    PubMed  Google Scholar 

  80. Pooler J.P., Valenzeno D.P. 1978. Kinetic factors governing sensitized photooxidation of excitable cell membranes. Photochem. Photobiol. 28:219–226

    PubMed  Google Scholar 

  81. Przybyszewski W.M., Widel M., Palyvoda O. 2002. Lipid peroxidation, DNA damage, and cellular morphology of R1 rhabdomyosarcoma cell line irradiated in vitro by gamma-rays with different dose rates. Teratogen., Carcinogen., Mutagen. 22:93–102

    Google Scholar 

  82. Rohn T.T., Hinds T.R., Vincenzi F.F. 1993. Ion transport ATPases as targets for free radical damage. Protection by an aminosteroid of the Ca2+ pump ATPase and Na+/K+ pump ATPase of human red blood cell membranes. Biochem. Pharmacol. 46:525–534

    Article  PubMed  Google Scholar 

  83. Rohn T.T., Hinds T.R., Vincenzi F.F. 1996. Inhibition of Ca2+-pump ATPase .and the Na+/K+-pump ATPase by iron-generated free radicals. Biochem. Pharmacol. 51:471–476

    Article  PubMed  Google Scholar 

  84. Rokitskaya T.I., Antonenko Y.N., Kotova E.A. 1993. The interaction of phthalocyanine with planar lipid bilayers - photodynamic inactivation of gramicidin channels. FEES Lett. 329:332–335

    Article  PubMed  Google Scholar 

  85. Rokitskaya T.I., Antonenko Y.N., Kotova E.A. 1996. Photodynamic inactivation of gramicidin channels: a flash photolysis study. Biochim. Biophys. Acta 1275:221–226

    PubMed  Google Scholar 

  86. Rokitskaya T.I., Block M., Antonenko Y.N., Kotova E.A., Pohl P. 2000. Photosensitizer binding to lipid bilayers as a precondition for the photoinactivation of membrane channels. Biophys. J. 78:2572–2580

    PubMed  Google Scholar 

  87. Russell W.L., Kelly E.M. 1982. Mutation frequencies in male mice and the estimation of genetic hazards of radiation in men. Proc. Nati. Acad. Sci. 79:542–544

    PubMed  Google Scholar 

  88. Saitow F., Nakaoka Y. 1996. Photodynamic action of methylene blue on the Paramecium membrane. Photochem. Photobiol. 63:868–873

    Google Scholar 

  89. Shao Q., Matsubara T., Bhatt S.K., Dhalla N.S. 1995. Inhibition of cardiac sarcolemma Na+-K+-ATPase by oxyradical generating systems. Mol. Cell. Biochem. 147:139–144

    Article  PubMed  Google Scholar 

  90. Sieber, F. 1987. Merocyanine 540. Photochem. Photobiol. 46:1035–1042

    PubMed  Google Scholar 

  91. Siems W.G., Hapner S.J., van Kuijk, F.J.1996.4-Hydroxynonenal inhibits Na+-K+-ATPase. Free Rad. Biol. Med. 20:215–223

    Article  PubMed  Google Scholar 

  92. Sonntag C. 1987. The Chemical Basis of Radiation Biology. Taylor &Francis, London

    Google Scholar 

  93. Sobko A.A., Vigasina M.A., Rokitskaya T.I., Kotova E.A., Zakharov S.D., Cramer W. A., Antonenko Y.N. 2004. Chemical and photochemical modification of colicin E1 and gramicidin A in bilayer lipid membranes. J. Membrane Biol. 199:51–62

    Article  Google Scholar 

  94. Specht K,G., Rodgers M.A.J. 1990. Depolarization of mouse myeloma cell membranes during photodynamic action. Photochem. Photobiol. 51:319–324

    PubMed  Google Scholar 

  95. Specht K.G., Rodgers M.A.J. 1991. Plasma membrane depolarization and calcium influx during cell injury by photodynamic action. Biochim. Biophys. Acta 1070:60–6

    PubMed  Google Scholar 

  96. Spiteller, G. 2001. Lipid peroxidation in aging and age-dependent diseases. Exp. Gerontology 36:1425–1457

    Article  Google Scholar 

  97. Stark G., Strassle M. 1988. Radiolysis and photolysis of ion channels formed by gramicidin A. In: A. Pullmann J. Jortner B. Pullmann, editors, Transport Through Membranes Carriers, Channels and Pumps, Kluwer Academic Publishers, Dortrecht pp. 253–265

    Google Scholar 

  98. Stark, G. 1991. The effect of ionizing radiation on lipid membranes. Biochim. Biophys. Acta 1071:103–122

    PubMed  Google Scholar 

  99. Strässle M., Stark G., Wilhelm W. 1987. Effects of ionizing radiation on artificial (planar) lipid membranes. I. Radiation inactivation of the ion channel gramicidin A. Int. J.Radiat. Biol. 51:265–286

    Google Scholar 

  100. Strässle M., Stark G., Wilhelm M. 1987. Effects of ionizing radiation on artificial (planar) lipid membranes. II The ion carriers valinomycin and nonactin as probes for radiation induced structural changes of the membrane. Int. J. Radiat. Biol. 51:287–302

    Google Scholar 

  101. Strässle M., Stark G., Wilhelm M., Daumas P., Heitz P., Lazaro R. 1989. Radiolysis and photolysis of ion channels formed by analogues of gramicidin A with a varying number of tryptophan residues. Biochim. Biophys. Acta 980:305–314

    Google Scholar 

  102. Strässle M., Wilhelm M., Stark G. 1991. The increase of the membrane capacitance as a consequence of radiation induced lipid peroxidation. Int. J. Radiat. Biol. 59:71–83

    PubMed  Google Scholar 

  103. Strässle M., Stark G. 1992. Photodynamic inactivation of an ion channel: gramicidin A. Photochem. Photobiol. 55:461–463

    PubMed  Google Scholar 

  104. Straight R.C., Spikes J.D. 1985. Photosensitized oxidation of biomolecules. In: A.A. Primer, editor Singlet Oxygen. Vol. 4, CRC Press, Boca Raton pp. 91–143

    Google Scholar 

  105. Tarr M., Valenzeno D.P. 1991. Modification of cardiac ionic currents by photosensitizer-generated reactive oxygen. J. Mol. Cell. Cardiol. 23:639–649

    Article  PubMed  Google Scholar 

  106. Tarr M., Arriaga E., Goertz K.K., Valenzeno D.P. 1994. Properties of cardiac I LEAK induced by photosensitizer-generated reactive oxygen. Free Radic. Biol. Med. 16:477–484

    Article  PubMed  Google Scholar 

  107. Tarr M., Arriaga E., Valenzeno D. 1995. Progression of cardiac potassium current modification after brief exposure to reactive oxygen. J. Mol. Cell. Cardiol. 27:1099–1109

    Article  PubMed  Google Scholar 

  108. Tarr M., Valenzeno D.P. 1998. Photomodification of cardiac membrane: chaotic currents and high conductance states in isolated patches. Photochem. Photobiol. 68:353–360

    Article  PubMed  Google Scholar 

  109. Tarr M., Frolov A., Valenzeno D.P. 2001. Photosensitization-induced calcium overload in cardiac cells: direct link to membrane permeabilization and calcium influx, Photochem. Photobiol. 73:418–424

    Article  PubMed  Google Scholar 

  110. Thomas C.E., Reed D.J. 1990. Radical-induced inactivation of kidney Na+,K+-ATPase: sensitivity to membrane lipid peroxidation and the protective effect of vitamin E. Arch. Biochem. Biophys. 281:96–105

    Article  PubMed  Google Scholar 

  111. Uchida, K. 2003. 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog. Lipid Res. 42:318–343

    Article  PubMed  Google Scholar 

  112. Vaca C.E., Wilhelm J., Harms-Ringdahl M. 1988. Interaction of lipid peroxidation products with DNA. A review. Mutation Res. 195:137–149

    PubMed  Google Scholar 

  113. Valenzeno D.P. 1987. Photomodification of biological membranes with emphasis on singlet oxygen mechanisms. Photochem. Photobiol. 46:147–160

    PubMed  Google Scholar 

  114. Valenzeno D.P., Tarr M. 1991. Membrane photomodification of cardiac myocytes: potassium and leakage currents. Photochem. Photobiol. 53:195–201

    PubMed  Google Scholar 

  115. Valenzeno D.P., Tarr M. 1995. Mechanisms of cellular photomodification. In: J.R. Heitz, ed, Light-activated Pest Control. ACS Symposium Series 616, American Chemical Society, Washington DC pp 24–33

    Google Scholar 

  116. Valenzeno D.P., Tarr M. 1998. GH3 cells, ionic currents and cell killing: photomodification sensitized by rose bengal. Photochem. Photobiol. 68:519–526

    Article  PubMed  Google Scholar 

  117. Valenzeno D.P., Tarr M. 2001. Calcium as a modulator of photosensitized killing of H9c2 cardiac cells. Photochem. Photobiol. 74:605–610

    Article  PubMed  Google Scholar 

  118. Veenhuizen R.B., Stewart F.A. 1995. The importance of fluence rate in photodynamic therapy: is there a parallel with ionizing radiation dose-rate effects? Radiother. Oncol. 37:131–135

    Article  PubMed  Google Scholar 

  119. Vilenchik M.M., Knudson A.G. 2000. Inverse radiation dose-rate effects on somatic and germ-line mutations and DNA damage rates. Proc. Natl. Acad. Sci. USA 97:5381–5386

    Article  PubMed  Google Scholar 

  120. Vinnikova A.K., Kukreja R.C., Hess M.L. 1992. Singlet oxygen-induced inhibition of cardiac sarcolemmal Na+K+-ATPase. J. Mol. Cell. Cardiol. 24:465–470

    Article  PubMed  Google Scholar 

  121. Wallace B.A. 1992. Crystallographic studies of a transmembrane ion channel, gramicidin A. Prog. Biophys. Mol. Biol. 57:59–69

    Article  PubMed  Google Scholar 

  122. Woolley G.A., Wallace B.A. 1992. Model ion channels: gramicidin and alamethicin. J. Membrane Biol. 129:109–136

    Google Scholar 

  123. Xiong H., Buck E., Stuart J., Pessah I.N., Salama G., Abramson J.J. 1992. Rose bengal activates the Ca2+ release channel from skeletal muscle sarcoplasmic reticulum. Arch. Biochem. Biophys. 292:522–528

    Article  PubMed  Google Scholar 

  124. Zeidler U., Barth C., Stark G. 1995. Radiation-induced and free radical-mediated inactivation of ion channels formed by the polyene antibiotic amphotericin B in lipid membranes: effect of radical scavengers and single channel analysis. Int. J. Radiat. Biol. 67:127–134

    PubMed  Google Scholar 

  125. Zeidler U., Wilhelm M., Stark G. 1996. The effect of free radicals on the conductance induced by alamethicin in planar lipid membranes: activation and inactivation. Biochim. Biophys. Acta 1281:73–79

    PubMed  Google Scholar 

Download references

Acknowledgement

The author thanks his collaborators Christian Barth, Frank Killig, Peter Koufen, Lars Kunz, Manuel Strässle, and Ulrich Zeidler for their dedicated work. Our various projects on the consequences of oxidative membrane damage were supported for more than two decades by the Deutsche Forschungsgemeinschaft and by the Ministerium für Wissenschaft und Kunst Baden-Württemberg.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stark, G. Functional Consequences of Oxidative Membrane Damage. J Membrane Biol 205, 1–16 (2005). https://doi.org/10.1007/s00232-005-0753-8

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0753-8

Keywords

Navigation