Skip to main content
Log in

Neuromodulation in the Spiral Ganglion: Shaping Signals from the Organ of Corti to the CNS

The Journal of Membrane Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Abe T., Sugihara H., Nawa H., Shigemoto R., Mizuno N., Nakanishi S. 1992. Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J. Biol. Chem. 267:13361–13368

    PubMed  CAS  Google Scholar 

  • Adamson C. L., Reid M. A., Davis R. L. 2002a. Opposite actions of brain-derived neurotrophic factor and neurotrophin-3 on firing features and ion channel composition of murine spiral ganglion neurons. J. Neurosci. 22:1385–1396

    CAS  Google Scholar 

  • Adamson C. L., Reid M. A., Mo Z. L., Bowne-English J., Davis R. L. 2002b. Firing features and potassium channel content of murine spiral ganglion neurons vary with cochlear location. J. Comp. Neurol. 447:331–350

    Article  CAS  Google Scholar 

  • Awatramani G.B., Slaughter M.M. 2000. Origin of transient and sustained responses in ganglion cells of the retina. J. Neurosci. 20:7087–7095

    PubMed  CAS  Google Scholar 

  • Baldelli P., Forni P. E., Carbone E. 2000. BDNF, NT-3 and NGF induce distinct new Ca2+ channel synthesis in developing hippocampal neurons. Eur. J. Neurosci. 12:4017–4032

    Article  PubMed  CAS  Google Scholar 

  • Baude A., Nusser Z., Roberts J.D., Mulvihill E., McIlhinney R.A., Somogyi P. 1993. The metabotropic glutamate receptor (mGluR1 alpha) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron 11:771–787

    Article  PubMed  CAS  Google Scholar 

  • Burnashev N. 1998. Calcium permeability of ligand-gated channels. Cell Calcium 24:325–332

    Article  PubMed  CAS  Google Scholar 

  • Chen X.K., Wang L.C., Zhou Y., Cai Q., Prakriya M., Duan K.L., Sheng Z.H., Lingle C., Zhou Z. 2005. Activation of GPCRs modulates quantal size in chromaffin cells through G(betagamma) and PKC. Nat. Neurosci. 8:1160–1168

    Article  PubMed  CAS  Google Scholar 

  • Cochran S. L., Stone J. S., Bermingham-McDonogh O., Akers S. R., Lefcort F., Rubel E. W. 1999. Ontogenetic expression of trk neurotrophin receptors in the chick auditory system. J. Comp. Neurol. 413:271–288

    Article  PubMed  CAS  Google Scholar 

  • Conn P.J., Pin J.P. 1997. Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol. 37:205–237

    Article  PubMed  CAS  Google Scholar 

  • Davis R. L. 2003. Gradients of neurotrophins, ion channels, and tuning in the cochlea . Neuroscientist 9:311–316

    Article  PubMed  CAS  Google Scholar 

  • De Blasi A., Conn P.J., Pin J., Nicoletti F. 2001. Molecular determinants of metabotropic glutamate receptor signaling. Trends Pharmacol. Sci. 22:114–120

    Article  PubMed  Google Scholar 

  • DeVries S.H. 2001. Exocytosed protons feedback to suppress the Ca2+ current in mammalian cone photoreceptors. Neuron 32:1107–1117

    Article  PubMed  CAS  Google Scholar 

  • Drew L.J., Rohrer D.K., Price M.P., Blaver K.E., Cockayne D.A., Cesare P., Wood J.N. 2004. Acid-sensing ion channels ASIC2 and ASIC3 do not contribute to mechanically activated currents in mammalian sensory neurones. J. Physiol. 556:691–710

    Article  PubMed  CAS  Google Scholar 

  • Drummond H.A., Abboud F.M., Welsh M.J. 2000. Localization of beta and gamma subunits of ENaC in sensory nerve endings in the rat foot pad. Brain Res. 884:1–12

    Article  PubMed  CAS  Google Scholar 

  • Felix D., Ehrenberger K. 1992. The efferent modulation of mammalian inner hair cell afferents. Hear. Res. 64:1–5

    Article  PubMed  CAS  Google Scholar 

  • Fettiplace R., Fuchs P. A. 1999. Mechanisms of hair cell tuning. Annu. Rev. Physiol. 61:809–834

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch B., Farinas I., Reichardt L. F. 1997b. Lack of neurotrophin 3 causes losses of both classes of spiral ganglion neurons in the cochlea in a region-specific fashion. J. Neurosci. 17:6213–6225

    CAS  Google Scholar 

  • Fritzsch B., Tessarollo L., Coppola E., Reichardt L. F. 2004. Neurotrophins in the ear: their roles in sensory neuron survival and fiber guidance. Prog. Brain Res. 146:265–278

    Article  PubMed  CAS  Google Scholar 

  • Gestwa G., Wiechers B., Zimmermann U., Praetorius M., Rohbock K., Kopschall I., Zenner H. P., Knipper M. 1999. Differential expression of trkB.T1 and trkB.T2, truncated trkC, and p75(NGFR) in the cochlea prior to hearing function. J. Comp. Neurol. 414:33–49

    Article  PubMed  CAS  Google Scholar 

  • Guth P.S., Holt J.C., Perin P., Athas G., Garcia M., Puri A., Zucca G., Botta L., Valli P. 1998. The metabotropic glutamate receptors of the vestibular organs. Hear. Res. 125:154–162

    Article  PubMed  CAS  Google Scholar 

  • Hansen M.R., Bok J., Devaiah A.K., Zha X.M., Green S.H. 2003. Ca2+/calmodulin-dependent protein kinases II and IV both promote survival but differ in their effects on axon growth in spiral ganglion neurons. J. Neurosci. Res. 72:169–184

    Article  PubMed  CAS  Google Scholar 

  • Hayashi Y., Momiyama A., Takahashi T., Ohishi H., Ogawa-Meguro R., Shigemoto R., Mizuno N., Nakanishi S. 1993. Role of a metabotropic glutamate receptor in synaptic modulation in the accessory olfactory bulb. Nature 366:687–690

    Article  PubMed  CAS  Google Scholar 

  • Hegarty J.L., Kay A.R., Green S.H. 1997. Trophic support of cultured spiral ganglion neurons by depolarization exceeds and is additive with that by neurotrophins or cAMP and requires elevation of [Ca2+]i within a set range. J. Neurosci. 17:1959–1970

    PubMed  CAS  Google Scholar 

  • Hildebrand M.S., de Silva M.G., Klockars T., Rose E., Price M., Smith R.J., McGuirt W.T., Christopoulos H., Petit C., Dahl H.H. 2004. Characterisation of DRASIC in the mouse inner ear. Hear. Res. 190:149–160

    Article  PubMed  CAS  Google Scholar 

  • Hille B. 2001. Senory transduction and excitable cells. In: B. Hille, editor. Ion channels of excitable membranes,. Sinauer Associates, Inc., Sunderland pp. 237–268

    Google Scholar 

  • Hossain W.A., Antic S.D., Yang Y., Rasband M.N., Morest D.K. 2005. Where is the spike generator of the cochlear nerve? Voltage-gated sodium channels in the mouse cochlea. J. Neurosci. 25:6857–6868

    Article  PubMed  CAS  Google Scholar 

  • Houamed K.M., Kuijper J.L., Gilbert T.L., Haldeman B.A., O’Hara P.J., Mulvihill E.R., Almers W., Hagen F.S. 1991. Cloning, expression, and gene structure of a G protein-coupled glutamate receptor from rat brain. Science 252:1318–1321

    PubMed  CAS  Google Scholar 

  • Housley G.D., Jagger D.J., Greenwood D., Raybould N.P., Salih S.G., Jarlebark L.E., Vlajkovic S.M., Kanjhan R., Nikolic P., Munoz D.J., Thorne P.R. 2002. Purinergic regulation of sound transduction and auditory neurotransmission. Audiol. Neurootol. 7:55–61

    Article  PubMed  CAS  Google Scholar 

  • Housley G.D., Kanjhan R., Raybould N.P., Greenwood D., Salih S.G., Jarlebark L., Burton L.D., Setz V.C., Cannell M.B., Soeller C., Christie D.L., Usami S., Matsubara A., Yoshie H., Ryan A.F., Thorne P.R. 1999. Expression of the P2X(2) receptor subunit of the ATP-gated ion channel in the cochlea: implications for sound transduction and auditory neurotransmission. J. Neurosci. 19:8377–8388

    PubMed  CAS  Google Scholar 

  • Huang L.C., Greenwood D., Thorne P.R., Housley G.D. 2005. Developmental regulation of neuron-specific P2X3 receptor expression in the rat cochlea. J. Comp. Neurol. 484:133–143

    Article  PubMed  CAS  Google Scholar 

  • Huang E. J., Reichardt L. F. 2003. Trk receptors: roles in neuronal signal transduction. Annu. Rev. Biochem. 72:609–642

    Article  PubMed  CAS  Google Scholar 

  • Ito K., Dulon D. 2002. Non-selective cation conductance activated by muscarinic and purinergic receptors in rat spiral ganglion neurons. Am. J. Physiol. 282:C1121–1136

    CAS  Google Scholar 

  • Ito K., Rome C., Bouleau Y., Dulon D. 2002. Substance P mobilizes intracellular calcium and activates a nonselective cation conductance in rat spiral ganglion neurons. Eur. J. Neurosci. 16:2095–2102

    Article  PubMed  Google Scholar 

  • Jagger D.J., Housley G.D. 2003. Membrane properties of type II spiral ganglion neurones identified in a neonatal rat cochlear slice. J. Physiol. 552:525–533

    Article  PubMed  CAS  Google Scholar 

  • Jagger D.J., Robertson D., Housley G.D. 2000. A technique for slicing the rat cochlea around the onset of hearing. J. Neurosci. Meth. 104:77–86

    Article  CAS  Google Scholar 

  • Jarlebark L.E., Housley G.D., Thorne P.R. 2000. Immunohistochemical localization of adenosine 5′-triphosphate-gated ion channel P2X(2) receptor subunits in adult and developing rat cochlea. J. Comp. Neurol. 421:289–301

    Article  PubMed  CAS  Google Scholar 

  • Jimenez C., Gireldez F., Represa J., Garcia-Diaz J. F. 1997. Calcium currents in dissociated cochlear neurons from the chick embryo and their modification by neurotrophin-3. Neuroscience 77:673–682

    Article  PubMed  CAS  Google Scholar 

  • Khan K.M., Drescher M.J., Hatfield J.S., Khan A.M., Drescher D.G. 2002. Muscarinic receptor subtypes are differentially distributed in the rat cochlea. Neurosci. 111:291–302

    Article  CAS  Google Scholar 

  • Kiang N. Y. S., Watanabe T., Thomas E. C., Clark L. F. 1965. Discharge Patterns of Single Fibers in the Cat’s Auditory Nerve. M.I.T. Press, Cambridge

    Google Scholar 

  • Kim J.Y., Saffen D. 2005. Activation of M1 muscarinic acetylcholine receptors stimulates the formation of a multiprotein complex centered on TRPC6 channels. J. Biol. Chem. 280:32035–32047

    Article  PubMed  CAS  Google Scholar 

  • Kleinlogel S., Oestreicher E., Arnold T., Ehrenberger K., Felix D. 1999. Metabotropic glutamate receptors group I are involved in cochlear neurotransmission. Neuroreport 10: 1879–1882

    PubMed  CAS  Google Scholar 

  • Kotak V.C., Sanes D.H. 1995. Synaptically evoked prolonged depolarizations in the developing auditory system. J. Neurophysiol. 74:1611–1620

    PubMed  CAS  Google Scholar 

  • Krishtal O.A., Osipchuk Y.V., Shelest T.N., Smirnoff S.V. 1987. Rapid extracellular pH transients related to synaptic transmission in rat hippocampal slices. Brain Res. 436:352–356

    Article  PubMed  CAS  Google Scholar 

  • Kujawa S.G., Erostegui C., Fallon M., Crist J., Bobbin R.P. 1994. Effects of adenosine -triphosphate and related agonists on cochlear function. Hear. Res. 76:87–100

    Article  PubMed  CAS  Google Scholar 

  • Lallemend F., Lefebvre P.P., Hans G., Rigo J.M., Van de Water T.R., Moonen G., Malgrange B. 2003. Substance P protects spiral ganglion neurons from apoptosis via PKC-Ca2+-MAPK/ERK pathways. J. Neurochem. 87:508–521

    Article  PubMed  CAS  Google Scholar 

  • Lee Y.M., Kim B.J., Kim H.J., Yang D.K., Zhu M.H., Lee K.P., So I., Kim K.W. 2003. TRPC5 as a candidate for the nonselective cation channel activated by muscarinic stimulation in murine stomach. Am. J. Physiol. 28:G604–G616

    Google Scholar 

  • Levine E. S., Dreyfus C. F., Black I. B., Plummer M. R. 1995. Differential effects of NGF and BDNF on voltage-gated calcium currents in embryonic basal forebrain neurons. J. Neurosci. 15:3084–3091

    PubMed  CAS  Google Scholar 

  • Liberman M. C. 1978. Auditory-nerve response from cats raised in a low-noise chamber. J. Acoust. Soc. Am. 63:442–455

    Article  PubMed  CAS  Google Scholar 

  • Lin X., Chen S., Chen P. 2000. Activation of metabotropic GABAB receptors inhibited glutamate responses in spiral ganglion neurons of mice. Neuroreport. 11:957–961

    PubMed  CAS  Google Scholar 

  • Liu, Q., Davis, R.L. 2005. The role of the Ih current in setting the threshold level of spiral ganglion neurons. Assoc.Res. Otolaryngol. Abstr. 67

  • Lujan R., Roberts J.D., Shigemoto R., Ohishi H., Somogyi P. 1997. Differential plasma membrane distribution of metabotropic glutamate receptors mGluR1 alpha, mGluR2 and mGluR5, relative to neurotransmitter release sites. J. Chem. Neuroanat. 13:219–241

    Article  PubMed  CAS  Google Scholar 

  • Masu M., Tanabe Y., Tsuchida K., Shigemoto R., Nakanishi S. 1991. Sequence and expression of a metabotropic glutamate receptor. Nature 349:760–765

    Article  PubMed  CAS  Google Scholar 

  • Meller S.T., Dykstra C.L., Gebhart G.F. 1993. Acute mechanical hyperalgesia is produced by coactivation of AMPA and metabotropic glutamate receptors. Neuroreport 4:879–882

    PubMed  CAS  Google Scholar 

  • Mo Z. L., Adamson C. L., Davis R. L. 2002. Dendrotoxin-sensitive K(+) currents contribute to accommodation in murine spiral ganglion neurons. J. Physiol. 542:763–778

    Article  PubMed  CAS  Google Scholar 

  • Mo Z.-L., Davis R. L. 1997a. Endogenous firing patterns of murine spiral ganglion neurons. J. Neurophysiol. 77:1294–1305

    CAS  Google Scholar 

  • Mo Z.-L., Davis R. L. 1997b. Heterogeneous voltage dependence of inward rectifier currents in spiral ganglion neurons. J. Neurophysiol. 78:3019–3027

    CAS  Google Scholar 

  • Mou K., Hunsberger C. L., Cleary J. M., Davis R. L. 1997. Synergistic effects of BDNF and NT-3 on postnatal spiral ganglion neurons. J. Comp. Neurol. 386:529–539

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T., Komune S., Uemura T., Akaike N. 1991. Excitatory amino acid response in isolated spiral ganglion cells of guinea pig cochlea. J. Neurophysiol. 65:715–723

    PubMed  CAS  Google Scholar 

  • Neugebauer V., Lucke T., Schaible H.G. 1994. Requirement of metabotropic glutamate receptors for the generation of inflammation-evoked hyperexcitability in rat spinal cord neurons. Eur. J. Neurosci. 6:1179–1186

    Article  PubMed  CAS  Google Scholar 

  • Niedzielski A., Safieddine S., Wenthold R. 1997. Molecular analysis of excitatory amino acid receptor expression in the cochlea. Audiol. Neurootol. 2:79–91

    Article  PubMed  CAS  Google Scholar 

  • Nikolic P., Housley G.D., Luo L., Ryan A.F., Thorne P.R. 2001. Transient expression of P2X(1) receptor subunits of ATP-gated ion channels in the developing rat cochlea. Brain Res. Dev. Brain Res. 126:173–182

    Article  PubMed  CAS  Google Scholar 

  • Nikolic P., Housley G.D., Thorne P.R. 2003. Expression of the P2X7 receptor subunit of the adenosine 5′-triphosphate-gated ion channel in the developing and adult rat cochlea. Audiol. Neurootol. 8:28–37

    Article  PubMed  CAS  Google Scholar 

  • Oh E.J., Gover T.D., Cordoba-Rodriguez R., Weinreich D. 2003. Substance P evokes cation currents through TRP channels in HEK293 cells. J. Neurophysiol. 90:2069–2073

    Article  PubMed  CAS  Google Scholar 

  • Peng B.G., Ahmad S., Chen S., Chen P., Price M.P., Lin X. 2004a. Acid-sensing ion channel 2 contributes a major component to acid-evoked excitatory responses in spiral ganglion neurons and plays a role in noise susceptibility of mice. J. Neurosci. 24:10167–10175

    Article  CAS  Google Scholar 

  • Peng B.G., Li Q.X., Ren T.Y., Ahmad S., Chen S.P., Chen P., Lin X. 2004b. Group I metabotropic glutamate receptors in spiral ganglion neurons contribute to excitatory neurotransmissions in the cochlea. Neuroscience 123:221–230

    Article  CAS  Google Scholar 

  • Petralia R.S., Wang Y.X., Zhao H.M., Wenthold R.J. 1996. Ionotropic and metabotropic glutamate receptors show unique postsynaptic, presynaptic, and glial localizations in the dorsal cochlear nucleus. J. Comp. Neurol. 372:356–383

    Article  PubMed  CAS  Google Scholar 

  • Pin J.P., Duvoisin R. 1995. The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34:1–26

    Article  PubMed  CAS  Google Scholar 

  • Price M.P., Lewin G.R., McIlwrath S.L., Cheng C., Xie J., Heppenstall P.A., Stucky C.L., Mannsfeldt A.G., Brennan T.J., Drummond H.A., Qiao J., Benson C.J., Tarr D.E., Hrstka R.F., Yang B., Williamson R.A., Welsh M.J. 2000. The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407:1007–1011

    Article  PubMed  CAS  Google Scholar 

  • Price M.P., McIlwrath S.L., Xie J., Cheng C., Qiao J., Tarr D.E., Sluka K.A., Brennan T.J., Lewin G.R., Welsh M.J. 2001. The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32:1071–1083

    Article  PubMed  CAS  Google Scholar 

  • Puel J.L., Ruel J., Gervais d’Aldin C., Pujol R. 1998. Excitotoxicity and repair of cochlear synapses after noise-trauma induced hearing loss. Neuroreport 9:2109–2114

    PubMed  CAS  Google Scholar 

  • Rome C., Luo D., Dulon D. 1999. Muscarinic receptor-mediated calcium signaling in spiral ganglion neurons of the mammalian cochlea. Brain Res. 846:196–203

    Article  PubMed  CAS  Google Scholar 

  • Rosenbluth J. 1962. The fine structure of the acoustic ganglia in the rat. J. Cell Biol. 12:329–359

    Article  PubMed  CAS  Google Scholar 

  • Roza, C., Puel, J.L., Kress, M., Baron, A., Diochot, S., Lazdunski, M., Waldmann, R. 2004. Knockout of the ASIC2 channel does not impair cutaneous mechanosensation, visceral mechanonociception and hearing. J. Physiol. 658:669–659

    Google Scholar 

  • Rubel E. W., Fritzsch B. 2002. Auditory system development: Primary auditory neurons and their targets. Annu. Rev. Neurosci. 25:51–101

    Article  PubMed  CAS  Google Scholar 

  • Rubio M.E., Soto F. 2001. Distinct Localization of P2X receptors at excitatory postsynaptic specializations. J. Neurosci. 21:641–653

    PubMed  CAS  Google Scholar 

  • Ruel J., Chen C., Pujol R., Bobbin R.P., Puel J.L. 1999. AMPA-preferring glutamate receptors in cochlear physiology of adult guinea-pig. J. Physiol. 518:667–680

    Article  PubMed  CAS  Google Scholar 

  • Safieddine S., Bartolami S., Wenthold R.J., Eybalin M. 1996. Pre- and postsynaptic M3 muscarinic receptor mRNAs in the rodent peripheral auditory system. Brain Res. Mol. Brain Res. 40:127–135

    PubMed  CAS  Google Scholar 

  • Salih S.G., Jagger D.J., Housley G.D. 2002. ATP-gated currents in rat primary auditory neurones in situ arise from a heteromultimetric P2X receptor subunit assembly. Neuropharmacology 42:386–395

    Article  PubMed  CAS  Google Scholar 

  • Sanes D.H., McGee J., Walsh E.J. 1998. Metabotropic glutamate receptor activation modulates sound level processing in the cochlear nucleus. J. Neurophysiol. 80:209–217

    PubMed  CAS  Google Scholar 

  • Santos-Sacchi J. 1993. Voltage-dependent ionic conductances of type I spiral ganglion cells from the guinea pig inner ear. J. Neurosci. 13:3599–3611

    PubMed  CAS  Google Scholar 

  • Schickinger B., Ehrenberger K., Felix D., Heiniger-Burki C., Imboden H., Davies W.E., Felix H. 1996. Substance P in the auditory hair cells in the guinea pig. ORL J. Otorhinolaryngol. Relat. Spec. 58:121–126

    PubMed  CAS  Google Scholar 

  • Schimmang T., Tan J., Muller M., Zimmermann U., Rohbock K., Kopschall I., Limberger A., Minichiello L., Knipper M. 2003. Lack of Bdnf and TrkB signalling in the postnatal cochlea leads to a spatial reshaping of innervation along the tonotopic axis and hearing loss. Development 130:4741–4750

    Article  PubMed  CAS  Google Scholar 

  • Schwarz D.W., Tennigkeit F., Puil E. 2000. Metabotropic transmitter actions in auditory thalamus. Acta Otolaryngol. 120:251–254

    PubMed  CAS  Google Scholar 

  • Segal R. A. 2003. Selectivity in neurotrophin signaling: theme and variations. Annu. Rev. Neurosci. 26:299–330

    Article  PubMed  CAS  Google Scholar 

  • Skinner L.J., Enee V., Beurg M., Jung H.H., Ryan A.F., Hafidi A., Aran JM., Dulon D. 2003. Contribution of BK Ca2+-activated K+ channels to auditory neurotransmission in the Guinea pig cochlea. J. Neurophysiol. 90:320–332

    Article  PubMed  CAS  Google Scholar 

  • Sueta T., Paki B., Everett A.W., Robertson D. 2003. Purinergic receptors in auditory neurotransmission. Hear. Res. 183:97–108

    Article  PubMed  CAS  Google Scholar 

  • Sugawara, M., Stankovic, K., Liberman, M.C., Corfas, G. 2005. Dynamic pattern of expression of NT-3 in the postnatal inner ear.Assoc.Res. Otolaryngol. Abstr. 811

  • Thorne P.R., Munoz D.J., Nikolic P., Mander L., Jagger D.J., Greenwood D., Vlajkovic S., Housley G.D. 2002. Potential role of purinergic signalling in cochlear pathology. Audiol. Neurootol. 7:180–184

    Article  PubMed  CAS  Google Scholar 

  • Traynelis S.F., Chesler M. 2001. Proton release as a modulator of presynaptic function. Neuron 32:960–962

    Article  PubMed  CAS  Google Scholar 

  • Vlajkovic S.M., Thorne P.R., Sevigny J., Robson S.C., Housley G.D. 2002. Distribution of ectonucleoside triphosphate diphosphohydrolases 1 and 2 in rat cochlea. Hear. Res. 170:127–138

    Article  PubMed  CAS  Google Scholar 

  • Wang J.C., Raybould N.P., Luo L., Ryan A.F., Cannell M.B., Thorne P.R., Housley G.D. 2003. Noise induces up-regulation of P2X2 receptor subunit of ATP-gated ion channels in the rat cochlea. Neuroreport 14:817–823

    Article  PubMed  CAS  Google Scholar 

  • Wang X., Robertson D. 1998a. Substance P-induced inward current in identified auditory efferent neurons in rat brain stem slices. J. Neurophysiol. 80:218–229

    CAS  Google Scholar 

  • Wang X., Robertson D. 1998b. Substance P-sensitive neurones in the rat auditory brainstem: possible relationship to medial olivocochlear neurones. Hear. Res. 116:86–98

    Article  CAS  Google Scholar 

  • Ylikoski J., Pirvola U., Moshnyakov M., Palgi J., Arumae U., Saarma M. 1993. Expression patterns of neurotrophin and their receptor mRNAs in the rat inner ear. Hear. Res. 65:69–78

    Article  PubMed  CAS  Google Scholar 

  • Yuste R., Miller R.B., Holthoff K., Zhang S., Miesenbock G. 2000. Synapto-pHluorins: chimeras between pH-sensitive mutants of green fluorescent protein and synaptic vesicle membrane proteins as reporters of neurotransmitter release. Methods Enzymol. 327:522–546

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z., Liu Q., Davis R. L. 2005. Complex regulation of spiral ganglion neuron firing patterns by neurotrophin-3. J. Neurosci. 25:7558–7566

    Article  PubMed  CAS  Google Scholar 

  • Zirpel L., Lachica E.A., Rubel E.W. 1995. Activation of a metabotropic glutamate receptor increases intracellular calcium concentrations in neurons of the avian cochlear nucleus. J. Neurosci. 15:214–222

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Institutes of Health grants NIDCD R01-01856 (RLD), NIDCD R01-DC04709 (XL) and the Woodruff Foundation (XL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.L. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dulon, D., Jagger, D., Lin, X. et al. Neuromodulation in the Spiral Ganglion: Shaping Signals from the Organ of Corti to the CNS. J Membrane Biol 209, 167–175 (2006). https://doi.org/10.1007/s00232-005-0841-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0841-9

Keywords

Navigation