Skip to main content
Log in

Diffusion tensor imaging: the normal evolution of ADC, RA, FA, and eigenvalues studied in multiple anatomical regions of the brain

  • Paediatric Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

The aim of our work was to investigate the process of myelination in healthy patients using the diffusion parameters apparent diffusion coefficient (ADC), relative anisotropy (RA), fractional anisotropy (FA), and eigenvalues. Age-dependent changes were assessed using the slope m of the fit functions that best described the data.

Materials and methods

Seventy-two patients (3 weeks–19 years) without pathological magnetic resonance imaging findings were selected from all pediatric patients scanned with diffusion tensor imaging over a 5-year period at our institution. ADC, RA, FA, and eigenvalue maps were calculated and regions of interest were selected in anterior/posterior pons, genu/splenium of corpus callosum (CC), anterior/posterior limb of internal capsule (IC), and white matter (WM) regions (frontal, temporal, parietal, occipital WM). Statistical analysis was performed using Spearman correlation coefficient and regression analysis.

Results

Mean values ranged 71.6 × 10−5 to 90.3 × 10−5 mm2/s (pons/parietal WM) for ADC, 0.32–0.94 (frontal WM/CC) for RA, and 0.36–0.81 (frontal WM/splenium) for FA. Logarithmic fit functions best described the data. Strong age influences were observed for CC, pons, and parietal/frontal WM and changes were significant for all three eigenvalues, most pronounced for perpendicular eigenvalues. Changes in RA and FA differed depending on the structure anisotropy.

Conclusions

Changes observed for ADC, RA, FA, and eigenvalues with age were consistent with previous findings. Changes detected for RA and FA varied due to the different scaling of both parameters. We found that the use of the largely linear scaled RA adds more valuable information for the assessment of age-dependent structural changes as compared to FA. Additionally, we report normative values for the diffusion parameters studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111:209–219. doi:10.1006/jmrb.1996.0086

    Article  PubMed  CAS  Google Scholar 

  2. van der Knaap MS, Valk J (1990) MR imaging of the various stages of normal myelination during the 1st year of life. Neuroradiology 31:459–470. doi:10.1007/BF00340123

    Article  PubMed  Google Scholar 

  3. Staudt M, Krageloh-Mann I, Grodd W (2000) Normal myelination of the child brain on MRI—a meta-analysis. Rofo 172:802–811

    PubMed  CAS  Google Scholar 

  4. Schneider JFL, Il’yasov KA, Hennig J, Martin E (2004) Fast quantitative diffusion-tensor imaging of cerebral white matter from the neonatal period to adolescence. Neuroradiology 46:258–266. doi:10.1007/s00234-003-1154-2

    Article  PubMed  CAS  Google Scholar 

  5. Barkovich AJ (2000) Concepts of myelin and myelination in neuroradiology. AJNR Am J Neuroradiol 21:1099–1109

    PubMed  CAS  Google Scholar 

  6. Mukherjee P, Miller JH, Shimony JS, Conturo TE, Lee BCP, Almli CR, McKinstry RC (2001) Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor imaging. Radiology 221:349–358. doi:10.1148/radiol.2212001702

    Article  PubMed  CAS  Google Scholar 

  7. Neil J, Miller J, Mukherjee P, Huppi PS (2002) Diffusion tensor imaging of normal and injured developing human brain—a technical review. NMR Biomed 15:543–552. doi:10.1002/nbm.784

    Article  PubMed  CAS  Google Scholar 

  8. Yakovlev PI, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Blackwell Scientific, London, pp 3–70

    Google Scholar 

  9. Morriss MC, Zimmerman RA, Bilaniuk LT, Hunter JV, Haselgrove JC (1999) Changes in brain water diffusion during childhood. Neuroradiology 41:929–934. doi:10.1007/s002340050869

    Article  PubMed  CAS  Google Scholar 

  10. Engelbrecht V, Scherer A, Rassek M, Witsack HJ, Modder U (2002) Diffusion-weighted MR imaging in the brain in children: findings in the normal brain and in the brain with white matter diseases. Radiology 222:410–418. doi:10.1148/radiol.2222010492

    Article  PubMed  Google Scholar 

  11. Kingsley PB (2006) Introduction to diffusion tensor imaging mathematics: part II. Anisotropy, diffusion-weighting factors, and gradient encoding schemes. Concepts Magn Reson Part A 28A:123–154. doi:10.1002/cmr.a.20049

    Article  Google Scholar 

  12. Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed 15:435–455. doi:10.1002/nbm.782

    Article  PubMed  Google Scholar 

  13. Le Bihan D (2003) Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 4:469–480. doi:10.1038/nrn1119

    Article  PubMed  Google Scholar 

  14. Gulani V, Webb AG, Duncan ID, Lauterbur PC (2001) Apparent diffusion tensor measurements in myelin-deficient rat spinal cords. Magn Reson Med 45:191–195. doi:10.1002/1522-2594(200102)45:2<191::AID-MRM1025>3.0.CO;2-9

    Article  PubMed  CAS  Google Scholar 

  15. Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 17:1429–1436. doi:10.1006/nimg.2002.1267

    Article  PubMed  Google Scholar 

  16. Prayer D, Roberts T, Barkovich AJ, Prayer L, Kucharczyk J, Moseley M, Arieff A (1997) Diffusion-weighted MRI of myelination in the rat brain following treatment with gonadal hormones. Neuroradiology 39:320–325. doi:10.1007/s002340050416

    Article  PubMed  CAS  Google Scholar 

  17. Bammer R (2003) Basic principles of diffusion-weighted imaging. Eur J Radiol 45:169–184. doi:10.1016/S0720-048X(02)00303-0

    Article  PubMed  Google Scholar 

  18. Papadakis NG, Xing D, Houston GC, Smith JM, Smith MI, James MF, Parsons AA, Huang CLH, Hall LD, Carpenter TA (1999) A study of rotationally invariant and symmetric indices of diffusion anisotropy. Magn Reson Imaging 17:881–892. doi:10.1016/S0730-725X(99)00029-6

    Article  PubMed  CAS  Google Scholar 

  19. Reese TG, Heid O, Weisskoff RM, Wedeen VJ (2003) Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med 49:177–182. doi:10.1002/mrm.10308

    Article  PubMed  CAS  Google Scholar 

  20. Rorden C, Brett M (2000) Stereotaxic display of brain lesions. Behav Neurol 12:191–200

    PubMed  Google Scholar 

  21. Partridge SC, Mukherjee P, Henry RG, Miller SP, Berman JI, Jin H, Lu Y, Glenn OA, Ferriero DM, Barkovich AJ, Vigneron DB (2004) Diffusion tensor imaging: serial quantitation of white matter tract maturity in premature newborns. Neuroimage 22:1302–1314. doi:10.1016/j.neuroimage.2004.02.038

    Article  PubMed  Google Scholar 

  22. Zhai GH, Lin WL, Wilber KP, Gerig G, Gilmore JH (2003) Comparisons of regional white matter diffusion in healthy neonates and adults performed with a 3.0-T head-only MR imaging unit. Radiology 229:673–681. doi:10.1148/radiol.2293021462

    Article  PubMed  Google Scholar 

  23. McGraw P, Liang LX, Provenzale JM (2002) Evaluation of normal age-related changes in anisotropy during infancy and childhood as shown by diffusion tensor imaging. AJR Am J Roentgenol 179:1515–1522

    PubMed  Google Scholar 

  24. Lebel C, Walker L, Leemans A, Phillips L, Beaulieu C (2008) Microstructural maturation of the human brain from childhood to adulthood. Neuroimage 40:1044–1055. doi:10.1016/j.neuroimage.2007.12.053

    Article  PubMed  CAS  Google Scholar 

  25. Bonekamp D, Nagae LM, Degaonkar M, Matson M, Abdalla WMA, Barker PB, Mori S, Horska A (2007) Diffusion tensor imaging in children and adolescents: reproducibility, hemispheric, and age-related differences. Neuroimage 34:733–742. doi:10.1016/j.neuroimage.2006.09.020

    Article  PubMed  Google Scholar 

  26. Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Paus T, Evans AC, Rapoport JL (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2:861–863. doi:10.1038/13158

    Article  PubMed  CAS  Google Scholar 

  27. Nusbaum AO, Tang CY, Buchsbaum MS, Wei TC, Atlas SW (2001) Regional and global changes in cerebral diffusion with normal aging. AJNR Am J Neuroradiol 22:136–142

    PubMed  CAS  Google Scholar 

  28. Snook L, Paulson LA, Roy D, Phillips L, Beaulieu C (2005) Diffusion tensor imaging of neurodevelopment in children and young adults. Neuroimage 26:1164–1173. doi:10.1016/j.neuroimage.2005.03.016

    Article  PubMed  Google Scholar 

  29. Staudt M, Krageloh-Mann I, Grodd W (2000) Normal myelination of the child brain on MRI—a meta-analysis. Rofo 172:802–811

    PubMed  CAS  Google Scholar 

  30. Paus T, Collins DL, Evans AC, Leonard G, Pike B, Zijdenbos A (2001) Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Res Bull 54:255–266. doi:10.1016/S0361-9230(00)00434-2

    Article  PubMed  CAS  Google Scholar 

  31. van der Knaap MS, Valk J (2005) Magnetic resonance of myelination and myelin disorders, 3rd edn. Springer, New York, pp 1–19 Myelin and white matter

    Google Scholar 

  32. Wimberger DM, Roberts TP, Barkovich AJ, Prayer LM, Moseley ME, Kucharczyk J (1995) Identification of premyelination by diffusion-weighted MRI. J Comput Assist Tomogr 19:28–33. doi:10.1097/00004728-199501000-00005

    Article  PubMed  CAS  Google Scholar 

  33. Forbes KPN, Pipe JG, Bird CR (2002) Changes in brain water diffusion during the 1st year of life. Radiology 222:405–409. doi:10.1148/radiol.2222010179

    Article  PubMed  Google Scholar 

  34. Provenzale JM, Liang L, DeLong D, White LE (2007) Diffusion tensor imaging assessment of brain white matter maturation during the first postnatal year. AJR Am J Roentgenol 189:476–486. doi:10.2214/AJR.07.2132

    Article  PubMed  Google Scholar 

  35. Gilmore JH, Lin W, Corouge I, Vetsa YSK, Smith JK, Kang C, Gu H, Hamer RM, Lieberman JA, Gerig G (2007) Early postnatal development of corpus callosum and corticospinal white matter assessed with quantitative tractography. AJNR Am J Neuroradiol 28:1789–1795. doi:10.3174/ajnr.A0751

    Article  PubMed  CAS  Google Scholar 

  36. Cohen-Cory S (2002) The developing synapse: construction and modulation of synaptic structures and circuits. Science 298:770–776. doi:10.1126/science.1075510

    Article  PubMed  CAS  Google Scholar 

  37. Keyser A (1983) Basic aspects of development and maturation of the brain—embryological contributions to neuroendocrinology. Psychoneuroendocrinology 8:157–181. doi:10.1016/0306-4530(83)90054-9

    Article  PubMed  CAS  Google Scholar 

  38. Evans AC, Brain Dev CG (2006) The NIH MRI study of normal brain development. Neuroimage 30:184–202. doi:10.1016/j.neuroimage.2005.09.068

    Article  PubMed  Google Scholar 

  39. Buchel C, Raedler T, Sommer M, Sach M, Weiller C, Koch MA (2004) White matter asymmetry in the human brain: a diffusion tensor MRI study. Cereb Cortex 14:945–951. doi:10.1093/cercor/bhh055

    Article  PubMed  CAS  Google Scholar 

  40. Helenius J, Soinne L, Perkio J, Salonen O, Kangasmaki A, Kaste M, Carano RAD, Aronen HJ, Tatlisumak T (2002) Diffusion-weighted MR imaging in normal human brains in various age groups. AJNR Am J Neuroradiol 23:194–199

    PubMed  Google Scholar 

  41. De Bellis MD, Keshavan MS, Beers SR, Hall J, Frustaci K, Masalehdan A, Noll J, Boring AM (2001) Sex differences in brain maturation during childhood and adolescence. Cereb Cortex 11:552–557. doi:10.1093/cercor/11.6.552

    Article  PubMed  Google Scholar 

  42. Naganawa S, Sato K, Katagiri T, Mimura T, Ishigaki T (2003) Regional ADC values of the normal brain: differences due to age, gender, and laterality. Eur Radiol 13:6–11

    PubMed  Google Scholar 

  43. Wu YC, Field AS, Chung MK, Badie B, Alexander AL (2004) Quantitative analysis of diffusion tensor orientation: theoretical framework. Magn Reson Med 52:1146–1155. doi:10.1002/mrm.20254

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors want to thank Zoltán Patay, M.D., Ph.D. of the Department of Radiological Sciences at St. Jude Children’s Research Hospital, Memphis, TN, USA for his support during the preparation of this manuscript and many helpful discussions and suggestions for its improvement.

We wish to express our gratitude to Mehmet Kocak of the Department of Biostatistics at St. Jude Children’s Research Hospital, Memphis, TN, USA for the review of statistical data analysis and many helpful suggestions.

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Löbel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Löbel, U., Sedlacik, J., Güllmar, D. et al. Diffusion tensor imaging: the normal evolution of ADC, RA, FA, and eigenvalues studied in multiple anatomical regions of the brain. Neuroradiology 51, 253–263 (2009). https://doi.org/10.1007/s00234-008-0488-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-008-0488-1

Keywords

Navigation