Skip to main content

Advertisement

Log in

Accuracy and reproducibility of a novel semi-automatic segmentation technique for MR volumetry of the pituitary gland

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Although several reports about volumetric determination of the pituitary gland exist, volumetries have been solely performed by indirect measurements or manual tracing on the gland’s boundaries. The purpose of this study was to evaluate the accuracy and reproducibility of a novel semi-automatic MR-based segmentation technique.

Methods

In an initial technical investigation, T1-weighted 3D native magnetised prepared rapid gradient echo sequences (1.5 T) with 1 mm isotropic voxel size achieved high reliability and were utilised in different in vitro and in vivo studies. The computer-assisted segmentation technique was based on an interactive watershed transform after resampling and gradient computation. Volumetry was performed by three observers with different software and neuroradiologic experiences, evaluating phantoms of known volume (0.3, 0.9 and 1.62 ml) and healthy subjects (26 to 38 years; overall 135 volumetries).

Results

High accuracy of the volumetry was shown by phantom analysis; measurement errors were <4% with a mean error of 2.2%. In vitro, reproducibility was also promising with intra-observer variability of 0.7% for observer 1 and 0.3% for observers 2 and 3; mean inter-observer variability was in vitro 1.2%. In vivo, scan–rescan, intra-observer and inter-observer variability showed mean values of 3.2%, 1.8% and 3.3%, respectively. Unifactorial analysis of variance demonstrated no significant differences between pituitary volumes for various MR scans or software calculations in the healthy study groups (p > 0.05).

Conclusion

The analysed semi-automatic MR volumetry of the pituitary gland is a valid, reliable and fast technique. Possible clinical applications are hyperplasia or atrophy of the gland in pathological circumstances either by a single assessment or by monitoring in follow-up studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CT:

Computer tomography

MRI:

Magnetic resonance imaging

CAD:

Computer-assisted diagnosis

SE:

Spin echo

MPRAGE:

Magnetised prepared rapid gradient echo

MPR:

Multiplanar reconstructed

IWT:

Interactive watershed transform

SD:

Standard deviation

ME:

Measurement error

CV:

Coefficient of variation

SEM:

Standard error of the mean

ANOVA:

Analysis of variance

GE:

Gradient echo

SNR:

Signal-to-noise ratio

References

  1. Castillo M (2005) Pituitary gland: development, normal appearances, and magnetic resonance imaging protocols. Top Magn Reson Imaging 16:259–268. doi:10.1097/01.rmr.0000224682.91253.15

    Article  PubMed  Google Scholar 

  2. Rennert J, Doerfler A (2007) Imaging of sellar and parasellar lesions. Clin Neurol Neurosurg 109:111–124. doi:10.1016/j.clineuro.2006.11.001

    Article  PubMed  Google Scholar 

  3. Amar AP, Weiss MH (2003) Pituitary anatomy and physiology. Neurosurg Clin N Am 14:11–23

    Article  PubMed  Google Scholar 

  4. Sanno N, Teramoto A, Osamura RY, Horvath E, Kovacs K, Lloyd RV, Scheithauer BW (2003) Pathology of pituitary tumors. Neurosurg Clin N Am 14:25–39

    Article  PubMed  Google Scholar 

  5. Elster AD (1993) Modern imaging of the pituitary. Radiology 187:1–14

    PubMed  CAS  Google Scholar 

  6. Syvertsen A, Haughton VM, Williams AL, Cusick JF (1979) The computed tomographic appearance of the normal pituitary gland and pituitary microadenomas. Radiology 133:385–391

    PubMed  CAS  Google Scholar 

  7. Miki Y, Matsuo M, Nishizawa S, Kuroda Y, Keyaki A, Makita Y, Kawamura J (1990) Pituitary adenomas and normal pituitary tissue: enhancement patterns on gadopentetate-enhanced MR imaging. Radiology 177:35–38

    PubMed  CAS  Google Scholar 

  8. Portman O, Flemming S, Cox JP, Johnston DG, Bydder GM (2008) Magnetic resonance imaging of the normal pituitary gland using ultrashort TE (UTE) pulse sequences (REV 1.0). Neuroradiology 50:213–220. doi:10.1007/s00234-007-0329-7

    Article  PubMed  Google Scholar 

  9. Miki Y, Kanagaki M, Takahashi JA, Ishizu K, Nakagawa M, Yamamoto A, Fushimi Y, Okada T, Mikuni N, Kikuta K, Hashimoto N, Togashi K (2007) Evaluation of pituitary macroadenomas with multidetector-row CT (MDCT): comparison with MR imaging. Neuroradiology 49:327–333. doi:10.1007/s00234-006-0194-9

    Article  PubMed  Google Scholar 

  10. Lurie SN, Doraiswamy PM, Husain MM, Boyko OB, Ellinwood EH Jr, Figiel GS, Krishnan KRR (1990) In vivo assessment of pituitary gland volume with magnetic resonance imaging: the effect of age. J Clin Endocrinol Metab 71:505–508. doi:10.1210/jcem-71-2-505

    Article  PubMed  CAS  Google Scholar 

  11. Marziali S, Gaudiello F, Bozzao A, Scirè G, Ferone E, Colangelo V, Simonetti A, Boscherini B, Floris R, Simonetti G (2004) Evaluation of anterior pituitary gland volume in childhood using three-dimensional MRI. Pediatr Radiol 34:547–551. doi:10.1007/s00247-004-1208-6

    Article  PubMed  Google Scholar 

  12. Takano K, Utsunomiya H, Ono H, Ohfu M, Okazaki M (1999) Normal development of the pituitary gland: assessment with three-dimensional MR volumetry. AJNR Am J Neuroradiol 20:312–315

    PubMed  CAS  Google Scholar 

  13. Elster AD, Sanders TG, Vines FS, Chen MY (1991) Size and shape of the pituitary gland during pregnancy and post partum: measurement with MR imaging. Radiology 181:531–535

    PubMed  CAS  Google Scholar 

  14. Miki Y, Kataoka ML, Shibata T, Haque TL, Kanagaki M, Shimono T, Okada T, Hiraga A, Nishizawa S, Ueda H, Rahman M, Konishi J (2005) The pituitary gland: changes on MR images during the 1st year after delivery. Radiology 235:999–1004. doi:10.1148/radiol.2353040243

    Article  PubMed  Google Scholar 

  15. Sharafuddin MJ, Luisiri A, Garibaldi LR, Fulk DL, Klein JB, Gillespie KN, Graviss ER (1994) MR imaging diagnosis of central precocious puberty: importance of changes in the shape and size of the pituitary gland. AJR Am J Roentgenol 162:1167–1173

    PubMed  CAS  Google Scholar 

  16. McLachlan MS, Williams ED, Fortt RW, Doyle FH (1968) Estimation of pituitary gland dimensions from radiographs of the sella turcica. A post-mortem study. Br J Radiol 41:323–330

    Article  PubMed  CAS  Google Scholar 

  17. Peyster RG, Hoover ED, Viscarello RR, Moshang T, Haskin ME (1983) CT appearance of the adolescent and preadolescent pituitary gland. AJNR Am J Neuroradiol 4:411–414

    PubMed  CAS  Google Scholar 

  18. Krishnan KR, Doraiswamy PM, Lurie SN, Figiel GS, Husain MM, Boyko OB, Ellinwood EH Jr, Nemeroff CB (1991) Pituitary size in depression. J Clin Endocrinol Metab 72:256–259. doi:10.1210/jcem-72-2-256

    Article  PubMed  CAS  Google Scholar 

  19. Schwartz PJ, Loe JA, Bash CN, Bove K, Turner EH, Frank JA, Wehr TA, Rosenthal NE (1997) Seasonality and pituitary volume. Psychiatry Res 74:151–157

    Article  PubMed  CAS  Google Scholar 

  20. Hahn HK, Peitgen HO (2003) IWT—interactive watershed transform: a hierarchical method for efficient interactive and automated segmentation of multidimensional gray-scale images. Proc Medical Imaging SPIE 5032:643–653

    Google Scholar 

  21. Hahn HK (2005) Morphological volumetry. Theory, concepts, and application to quantitative medical imaging. Dissertation, University of Bremen, Germany

  22. Haris K, Efstratiadis SN, Maglaveras N, Katsaggelos AK (1998) Hybrid image segmentation using watersheds and fast region merging. IEEE Trans Image Process 7:1684–1699

    Article  PubMed  CAS  Google Scholar 

  23. Lukas C, Hahn HK, Bellenberg B, Rexilius J, Schmid G, Schimrigk SK, Przuntek H, Köster O, Peitgen HO (2004) Sensitivity and reproducibility of a new fast 3D segmentation technique for clinical MR-based brain volumetry in multiple sclerosis. Neuroradiology 46:906–915. doi:10.1007/s00234-004-1282-3

    Article  PubMed  Google Scholar 

  24. Hahn HK, Millar WS, Klinghammer O, Durkin MS, Tulipano PK, Peitgen HO (2004) A reliable and efficient method for cerebral ventricular volumetry in pediatric neuroimaging. Meth Inf Med 43:376–382

    CAS  Google Scholar 

  25. Giesel FL, Hahn HK, Thomann PA, Widjaja E, Wignall E, von Tengg-Kobligk H, Pantel J, Griffiths PD, Peitgen HO, Schroder J, Essig M (2006) Temporal horn index and volume of medial temporal lobe atrophy using a new semiautomated method for rapid and precise assessment. AJNR Am J Neuroradiol 27:1454–1458

    PubMed  CAS  Google Scholar 

  26. Moul DE, Wehr TA, Frank JA (1995) Possible seasonal changes in pituitary size. AJNR Am J Neuroradiol 16:214–215

    PubMed  CAS  Google Scholar 

  27. Mueller CA, Scorzin J, Koenig R, Urbach H, Fimmers R, Zentner J, Lehmann TN, Schramm J (2007) Comparison of manual tracing versus a semiautomatic radial measurement method in temporal lobe MRI volumetry for pharmacoresistant epilepsy. Neuroradiology 49:189–201. doi:10.1007/s00234-006-0171-3

    Article  PubMed  Google Scholar 

  28. Tae WS, Kim SS, Lee KU, Nam EC, Kim KW (2008) Validation of hippocampal volumes measured using a manual method and two automated methods (FreeSurfer and IBASPM) in chronic major depressive disorder. Neuroradiology 50:569–581. doi:10.1007/s00234-008-0383-9

    Article  PubMed  Google Scholar 

  29. Benesch H, Felber SR, Finkenstedt G, Kremser C, Stockhammer G, Aichner FT (1995) MR volumetry for monitoring intramuscular bromocriptine treatment in macroprolactinomas. J Comput Assist Tomogr 19:866–870

    Article  PubMed  CAS  Google Scholar 

  30. Van der Vlugt-Meijer RH, Meij BP, Voorhout G (2006) Thin-slice three-dimensional gradient-echo magnetic resonance imaging of the pituitary gland in healthy dogs. Am J Vet Res 67:1865–1872. doi:10.2460/ajvr.67.11.1865

    Article  PubMed  Google Scholar 

  31. Rao VM, Vinitski S, Babaria A, Flanders A, Mishkin MM, Gonzalez C (1991) Enhanced resolution of pituitary fossa by three-dimensional fat-suppressed gradient-echo magnetic resonance: before and after gadolinium enhancement. J Neuroimaging 1:95–99

    PubMed  CAS  Google Scholar 

  32. Firbank MJ, Coulthard A, Harrison RM, Williams ED (1999) Partial volume effects in MRI studies of multiple sclerosis. Magn Reson Imaging 17:593–601. doi:10.1016/S0730-725X(98)00210-0

    Article  PubMed  CAS  Google Scholar 

  33. Ashton EA, Takahashi C, Berg MJ, Goodman A, Totterman S, Ekholm S (2003) Accuracy and reproducibility of manual and semiautomated quantification of MS lesions by MRI. J Magn Reson Imaging 17:300–308. doi:10.1002/jmri.10258

    Article  PubMed  Google Scholar 

  34. Joe BN, Fukui MB, Meltzer CC, Huang QS, Day RS, Greer PJ, Bozik ME (1999) Brain tumor volume measurement: comparison of manual and semiautomated methods. Radiology 212:811–816

    PubMed  CAS  Google Scholar 

  35. Jack CR Jr, Bentley MD, Twomey CK, Zinsmeister AR (1990) MR imaging-based volume measurements of the hippocampal formation and anterior temporal lobe: validation studies. Radiology 176:205–209

    PubMed  Google Scholar 

  36. Kiortsis D, Xydis V, Drougia AG, Argyropoulou PI, Andronikou S, Efremidis SC, Argyropoulou MI (2004) The height of the pituitary in preterm infants during the first 2 years of life: an MRI study. Neuroradiology 46:224–256. doi:10.1007/s00234-003-1126-6

    Article  PubMed  CAS  Google Scholar 

  37. Shimono T, Hatabu H, Kasagi K, Miki Y, Nishizawa S, Misaki T, Hiraga A, Konishi J (1999) Rapid progression of pituitary hyperplasia in humans with primary hypothyroidism: demonstration with MR imaging. Radiology 213:383–388

    PubMed  CAS  Google Scholar 

  38. Doraiswamy PM, Krishnan KR, Figiel GS, Husain MM, Boyko OB, Rockwell WJ, Ellinwood EH Jr (1990) A brain magnetic resonance imaging study of pituitary gland morphology in anorexia nervosa and bulimia. Biol Psychiatry 28:110–116

    Article  PubMed  CAS  Google Scholar 

  39. Argyropoulou MI, Xydis V, Kiortsis DN, Pantou K, Zikou A, Efremidis SC, Andronikou S (2004) Pituitary gland signal in pre-term infants during the first year of life: an MRI study. Neuroradiology 46:1031–1035. doi:10.1007/s00234-004-1285-0

    Article  PubMed  Google Scholar 

  40. Pickett CA (2005) Update on the medical management of pituitary adenomas. Curr Neurol Neurosci Rep 5:178–185

    Article  PubMed  CAS  Google Scholar 

  41. Yoon PH, Kim DI, Jeon P, Lee SI, Lee SK, Kim SH (2001) Pituitary adenomas: early postoperative MR imaging after transsphenoidal resection. AJNR Am J Neuroradiol 22:1097–1104

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane M. Renz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renz, D.M., Hahn, H.K., Schmidt, P. et al. Accuracy and reproducibility of a novel semi-automatic segmentation technique for MR volumetry of the pituitary gland. Neuroradiology 53, 233–244 (2011). https://doi.org/10.1007/s00234-010-0727-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-010-0727-0

Keywords

Navigation