Skip to main content

Advertisement

Log in

Evaluation of liver tissue by ultrasound elastography and clinical parameters in children with multiple blood cell transfusions

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

Children receiving multiple blood cell transfusions are prone to iron overload and successive tissue damage in liver parenchyma, making noninvasive screening options desirable. Ultrasound (US) elastography using acoustic radiation force impulse (ARFI) imaging enables evaluation of liver parenchyma stiffness, and MRI allows for quantification of liver iron concentration.

Objective

The objective was to correlate US elastography with MRI in children who had undergone bone marrow transplantation and to evaluate the modification of liver tissue with US in combination with clinical parameters at follow-up.

Materials and methods

ARFI, T2*-weighted MRI and a clinical score (HepScore, based on parameters of liver function) were performed in 45 patients (24 male; mean age 9.7 years) before and 100 days and 365 days after transplantation. All received multiple blood transfusions (mean number 22.2 up until 1 year after transplantation). We correlated US findings and HepScore with MRI findings.

Results

We observed signs of iron accumulation in 29/45 (64.4%) patients on MRI (T2*<10 ms) and 15/45 (33.3%) showed increased tissue stiffness (ARFI>5.5 kPa). Correlation of elastography and MRI was not significant (P=0.57; n=51 matched measurements). Comparing US elastography with HepScore in receiver operating characteristic (ROC) curve analysis indicated a cut-off for affected parenchyma if HepScore was >5 points (sensitivity 67%, specificity 68%). Simultaneous increases of both indicated tissue alteration.

Conclusion

Combining US and HepScore enabled detection of liver tissue alteration through iron overload, but we found no direct significant effect of estimated iron from MRI on ARFI imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kohgo Y, Ikuta K, Ohtake T et al (2008) Body iron metabolism and pathophysiology of iron overload. Int J Hematol 88:7–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Porter JB, De Witte T, Cappellini MD, Gattermann N (2015) New insights into transfusion-related iron toxicity: implications for the oncologist. Crit Rev Oncol Hematol 99:261–271

  3. Milic S, Mikolasevic I, Orlic L et al (2016) The role of iron and iron overload in chronic liver disease. Med Sci Monit 22:2144–2151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Knovich MA, Storey JA, Coffman LG et al (2009) Ferritin for the clinician. Blood Rev 23:95–104

    Article  CAS  PubMed  Google Scholar 

  5. Ruscitti P, Cipriani P, Di Benedetto P et al (2017) H-ferritin and pro-inflammatory cytokines are increased in the bone marrow of patients affected by macrophage activation syndrome. Clin Exp Immunol 2:220–228

    Google Scholar 

  6. Schaffner M, Rosenstein L, Ballas Z, Suneja M (2017) Significance of hyperferritinemia in hospitalized adults. Am J Med Sci 354:152–158

    Article  PubMed  Google Scholar 

  7. Sreedharan A, Bowyer S, Wallace CA et al (2006) Macrophage activation syndrome and other systemic inflammatory conditions after bone marrow transplantation. Bone Marrow Transplant 37:629–634

    Article  CAS  PubMed  Google Scholar 

  8. Kolnagou A, Yazman D, Economides C et al (2009) Uses and limitations of serum ferritin, magnetic resonance imaging T2 and T2* in the diagnosis of iron overload and in the ferrikinetics of normalization of the iron stores in thalassemia using the international committee on chelation deferiprone/deferoxamine combination protocol. Hemoglobin 33:312–322

    Article  CAS  PubMed  Google Scholar 

  9. Otrock ZK, Daver N, Kantarjian HM, Eby CS (2017) Diagnostic challenges of hemophagocytic lymphohistiocytosis. Clin Lymphoma Myeloma Leuk 17:105–110

    Article  Google Scholar 

  10. Vag T, Kentouche K, Krumbein I et al (2011) Noninvasive measurement of liver iron concentration at MRI in children with acute leukemia: initial results. Pediatr Radiol 41:980–984

    Article  PubMed  Google Scholar 

  11. Paisant A, d'Assignies G, Bannier E et al (2017) MRI for the measurement of liver iron content, and for the diagnosis and follow-up of iron overload disorders. Presse Med 46:e279–e287

    Article  PubMed  Google Scholar 

  12. Henninger B, Kremser C, Rauch S et al (2012) Evaluation of MR imaging with T1 and T2* mapping for the determination of hepatic iron overload. Eur Radiol 22:2478–2486

    Article  CAS  PubMed  Google Scholar 

  13. Runge JH, Akkerman EM, Troelstra MA et al (2016) Comparison of clinical MRI liver iron content measurements using signal intensity ratios, R(2) and R(2)*. Abdom Radiol 41:2123–2131

    Article  Google Scholar 

  14. St. Pierre TG, Clark PR, Chua-Anusorn W et al (2005) Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance. Blood 105:855–861

    Article  CAS  PubMed  Google Scholar 

  15. Milford D, Bendszus M, Heiland S (2018) A novel method for T2 quantification in presence of B1 inhomogeneities. Z Med Phys 28:63–72

    Article  PubMed  Google Scholar 

  16. Quinn CT, Pierre TGS (2016) MRI measurements of iron load in transfusion-dependent patients: implementation, challenges, and pitfalls. Pediatr Blood Cancer 63:773–780

    Article  CAS  PubMed  Google Scholar 

  17. Alústiza JM, Castiella A, Juan MDD et al (2007) Iron overload in the liver diagnostic and quantification. Eur J Radiol 61:499–506

    Article  PubMed  Google Scholar 

  18. Tsitsikas DA, Nzouakou R, Ameen V et al (2014) Comparison of serial serum ferritin measurements and liver iron concentration assessed by MRI in adult transfused patients with sickle cell disease. Eur J Haematol 92:164–167

    Article  CAS  PubMed  Google Scholar 

  19. Bruno C, Minniti S, Bucci A, Mucelli RP (2016) ARFI: from basic principles to clinical applications in diffuse chronic disease — a review. Insights Imaging 7:735–746

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hanquinet S, Courvoisier D, Kanavaki A et al (2013) Acoustic radiation force impulse imaging — normal values of liver stiffness in healthy children. Pediatr Radiol 43:539–544

    Article  PubMed  Google Scholar 

  21. Engelmann G, Gebhardt C, Wenning D et al (2012) Feasibility study and control values of transient elastography in healthy children. Eur J Pediatr 171:353–360

    Article  PubMed  Google Scholar 

  22. Wood JC, Enriquez C, Ghugre N et al (2005) MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood 4:1460–1465

    Article  CAS  Google Scholar 

  23. Schweser F, Krumbein I, Herrmann K-H et al (2014) Which one is most accurate and has highest precision? A comprehensive analysis of T2(*) estimation techniques. Proceedings of the International Society for Magnetic Resonance in Medicine Annual Meeting, Milan, p 3175

    Google Scholar 

  24. Perazzo H, Veloso VG, Grinsztejn B et al (2015) Factors that could impact on liver fibrosis staging by transient elastography. Int J Hepatol 2015:624596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Trout AT, Dillman JR, Xanthakos S et al (2016) Prospective assessment of correlation between US acoustic radiation force impulse and MR elastography in a pediatric population. Radiology 281:544–552

    Article  PubMed  Google Scholar 

  26. Mueller-Abt PR, Frawley KJ, Greer RM, Lewindon PJ (2008) Comparison of ultrasound and biopsy findings in children with cystic fibrosis related liver disease. J Cyst Fibros 7:215–221

    Article  PubMed  Google Scholar 

  27. Sagir A, Ney D, Oh J et al (2015) Evaluation of acoustic radiation force impulse imaging (ARFI) for the determination of liver stiffness using transient elastography as a reference in children. Ultrasound Int Open 1:E2–E7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fiege J, Mainz JG, Tabori H et al (2017) ARFI Elastographie der Leberbeteiligung bei Zystischer Fibrose. [ARFI elastography of cystic fibrosis-related liver disease (CFLD)] Monatsschrift Kinderheilkunde 165:888–894

  29. Franchi-Abella S, Corno L, Gonzales E et al (2016) Feasibility and diagnostic accuracy of supersonic shear-wave elastography for the assessment of liver stiffness and liver fibrosis in children: a pilot study of 96 patients. Radiology 278:554–562

    Article  PubMed  Google Scholar 

  30. Lörke J, Erhardt A, Vogt C, Häussinger D (2007) Nicht invasive diagnostik der leberzirrhose. [Noninvasive investigation of liver cirrhosis]. Dtsch Ärztebl 104:A1752–A1757

  31. Mansoor S, Collyer E, Alkhouri N (2015) A comprehensive review of noninvasive liver fibrosis tests in pediatric nonalcoholic fatty liver disease. Curr Gastroenterol Rep 17:23

    Article  PubMed  Google Scholar 

  32. Xiao G, Zhu S, Xiao X et al (2017) Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: a meta-analysis. Hepatology 66:1486–1501

    Article  CAS  PubMed  Google Scholar 

  33. Karlas T, Weber J, Nehring C et al (2014) Value of liver elastography and abdominal ultrasound for detection of complications of allogeneic hemopoietic SCT. Bone Marrow Transplant 49:806–811

    Article  CAS  PubMed  Google Scholar 

  34. Reddivalla N, Robinson AL, Reid KJ et al (2018) Using liver elastography to diagnose sinusoidal obstruction syndrome in pediatric patients undergoing hematopoetic [sic] stem cell transplant. Bone Marrow Transplant. https://doi.org/10.1038/s41409-017-0064-6

  35. Rose C, Vandevenne P, Bourgeois E et al (2006) Liver iron content assessment by routine and simple magnetic resonance imaging procedure in highly transfused patients. Eur J Haematol 77:145–149

    Article  CAS  PubMed  Google Scholar 

  36. Auberger J, Graziadei I, Clausen J et al (2012) Non-invasive transient elastography for the prediction of liver toxicity following hematopoietic SCT. Bone Marrow Transplant 48:159–160

    Article  PubMed  Google Scholar 

  37. Colecchia A, Marasco G, Ravaioli F et al (2016) Usefulness of liver stiffness measurement in predicting hepatic veno-occlusive disease development in patients who undergo HSCT. Bone Marrow Transplant 52:494–497

    Article  CAS  PubMed  Google Scholar 

  38. Sarrazin C, Berg T, Ross RS et al (2010) Update der S 3-Leitlinie Prophylaxe, Di agnostik und Therapie der Hepatitis-C-Virus (HCV)-Infektion, AWMF-Register-Nr.: 021 / 012. [Prophylaxis, diagnosis and therapy of hepatitis C virus (HCV) infection: the German guidelines on the management of HCV infection]. Z Gastroenterol 48:289–351

Download references

Acknowledgments

This study was partly supported by Novartis AG, Nürnberg, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Mentzel.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wurschi, G.W., Kentouche, K., Herrmann, KH. et al. Evaluation of liver tissue by ultrasound elastography and clinical parameters in children with multiple blood cell transfusions. Pediatr Radiol 49, 897–905 (2019). https://doi.org/10.1007/s00247-019-04382-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-019-04382-9

Keywords

Navigation