Skip to main content
Log in

Co-Evolutionary Dynamics of the Bacteria Vibrio sp. CV1 and Phages V1G, V1P1, and V1P2: Implications for Phage Therapy

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Bacterial infections are the second largest cause of mortality in shrimp hatcheries. Among them, bacteria from the genus Vibrio constitute a major threat. As the use of antibiotics may be ineffective and banned from the food sector, alternatives are required. Historically, phage therapy, which is the use of bacteriophages, is thought to be a promising option to fight against bacterial infections. However, as for antibiotics, resistance can be rapidly developed. Since the emergence of resistance is highly undesirable, a formal characterization of the dynamics of its acquisition is mandatory. Here, we explored the co-evolutionary dynamics of resistance between the bacteria Vibrio sp. CV1 and the phages V1G, V1P1, and V1P2. Single-phage treatments as well as a cocktail composed of the three phages were considered. We found that in the presence of a single phage, bacteria rapidly evolved resistance, and the phages decreased their infectivity, suggesting that monotherapy may be an inefficient treatment to fight against Vibrio infections in shrimp hatcheries. On the contrary, the use of a phage cocktail considerably delayed the evolution of resistance and sustained phage infectivity for periods in which shrimp larvae are most susceptible to bacterial infections, suggesting the simultaneous use of multiple phages as a serious strategy for the control of vibriosis. These findings are very promising in terms of their consequences to different industrial and medical scenarios where bacterial infections are present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bostock J, McAndrew B, Richards R, Jauncey K, Telfer T, Lorenzen K, Little D, Ross L, Handisyde N, Gatward I, Corner R (2010) Aquaculture: global status and trends. Phil Trans R Soc B Biol Sci 365:2897–2912. doi:10.1098/rstb.2010.0170

    Article  Google Scholar 

  2. Defoirdt T, Sorgeloos P, Bossier P (2011) Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr Opin Microbiol 14:251–258. doi:10.1016/j.mib.2011.03.004

    Article  PubMed  Google Scholar 

  3. Gómez G, Balcázar J, Ma S (2007) Probiotics as control agents in aquaculture. J Ocean Univ China (English Edition) 6:76–79. doi:10.1007/s11802-007-0076-8

    Article  Google Scholar 

  4. Defoirdt T, Boon N, Sorgeloos P, Verstraete W, Bossier P (2007) Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example. Trends Biotechnol 25:472–479. doi:10.1016/j.tibtech.2007.08.001

    Article  CAS  PubMed  Google Scholar 

  5. McPhearson RM, DePaola A, Zywno SR, Motes ML Jr, Guarino AM (1991) Antibiotic resistance in Gram-negative bacteria from cultured catfish and aquaculture ponds. Aquaculture 99:203–211. doi:10.1016/0044-8486(91)90241-x

    Article  Google Scholar 

  6. Miranda CD, Zemelman R (2002) Bacterial resistance to oxytetracycline in Chilean salmon farming. Aquaculture 212:31–47. doi:10.1016/s0044-8486(02)00124-2

    Article  CAS  Google Scholar 

  7. Breitbart M, Salamon P, Andresen B, Mahaffy JM, Segall AM, Mead D, Azam F, Rohwer F (2002) Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci 99:14250–14255. doi:10.1073/pnas.202488399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Hambly E, Suttle CA (2005) The viriosphere, diversity, and genetic exchange within phage communities. Curr Opin Microbiol 8:444–450. doi:10.1016/j.mib.2005.06.005

    Article  CAS  PubMed  Google Scholar 

  9. Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127–181. doi:10.1016/j.femsre.2003.08.001

    Article  CAS  PubMed  Google Scholar 

  10. Housby JN, Mann NH (2009) Phage therapy. Drug Discov Today 14:536–540

    Article  CAS  PubMed  Google Scholar 

  11. Hanlon GW (2007) Bacteriophages: an appraisal of their role in the treatment of bacterial infections. Int J Antimicrob Agents 30:118–128. doi:10.1016/j.ijantimicag.2007.04.006

    Article  CAS  PubMed  Google Scholar 

  12. Mathur M, Vidhani S, Mehndiratta P (2003) Bacteriophage therapy: an alternative to conventional antibiotics. J Assoc Physicians India 51:593–596

    CAS  PubMed  Google Scholar 

  13. Karunasagar I, Shivu MM, Girisha SK, Krohne G, Karunasagar I (2007) Biocontrol of pathogens in shrimp hatcheries using bacteriophages. Aquaculture 268:288–292. doi:10.1016/j.aquaculture.2007.04.049

    Article  Google Scholar 

  14. Vinod MG, Shivu MM, Umesha KR, Rajeeva BC et al (2006) Isolation of Vibrio harveyi bacteriophage with a potential for biocontrol of luminous vibriosis in hatchery environments. Aquaculture 255:117. doi:10.1016/j.aquaculture.2005.12.003

    Article  CAS  Google Scholar 

  15. Kutateladze M, Adamia R (2010) Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol 28:591–595

    Article  CAS  PubMed  Google Scholar 

  16. O'Flynn G, Ross RP, Fitzgerals GF, Coffey A (2004) Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli o157:H7. Appl Environ Microbiol 70:3417–3424. doi:10.1128/AEM.70.6.3417-3424.2004

    Article  PubMed Central  PubMed  Google Scholar 

  17. Gu J, Liu X, Li Y, Han W, Lei L, Yang Y, Zhao H, Gao Y, Song J, Lu R, Sun C, Feng X (2012) A method for generation phage cocktail with great therapeutic potential. PLoS ONE 7:e31698. doi:10.1371/journal.pone.0031698

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Chao L, Levin BR, Stewart FM (1977) A complex community in a simple habitat: an experimental study with bacteria and phage. Ecology 58:369–378

    Article  Google Scholar 

  19. Jessup CM, Forde SE (2008) Ecology and evolution in microbial systems: the generation and maintenance of diversity in phage-host interactions. Res Microbiol 159:382–389. doi:10.1016/j.resmic.2008.05.006

    Article  CAS  PubMed  Google Scholar 

  20. Woolhouse MEJ, Webster JP, Domingo E, Charlesworth B, Levin BR (2002) Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nat Genet 32:569–577. doi:10.1038/ng1202-569

    Article  CAS  PubMed  Google Scholar 

  21. Brockhurst MA, Morgan AD, Rainey PB, Buckling A (2003) Population mixing accelerates coevolution. Ecol Lett 6:975–979. doi:10.1046/j.1461-0248.2003.00531.x

    Article  Google Scholar 

  22. Buckling A, Rainey PB (2002) Antagonistic coevolution between a bacterium and a bacteriophage. Proc R Soc London, Ser B 269:931–936. doi:10.1098/rspb.2001.1945

    Article  Google Scholar 

  23. Poullain V, Gandon S, Brockhurst M, Buckling A, Hochberg M (2008) The evolution of specificity in evolving and coevolving antagonistic interactions between a bacteria and its phage. Evolution 62:1–11. doi:10.1111/j.1558-5646.2007.00260.x

    PubMed  Google Scholar 

  24. Mizoguchi K, Morita M, Fischer CR, Yoichi M, Tanji Y, Unno H (2003) Coevolution of bacteriophage PP01 and Escherichia coli 0157:H7 in continuous culture. Appl Environ Microbiol 69:170–176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Paterson S, Vogwill T, Buckling A, Benmayor R, Spiers AJ, Thomson NR, Quail M, Smith F, Walker D, Libberton B, Fenton A, Hall N, Brockhurst MA (2010) Antagonistic coevolution accelerates molecular evolution. Nature 464:275–278. doi:10.1038/nature08798

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Thompson JN (2005) Coevolution: the geographic mosaic of coevolutionary arms races. Curr Biol 15:R992–R994

    Article  CAS  PubMed  Google Scholar 

  27. Gomez P, Buckling A (2011) Bacteria-phage antagonistic coevolution in soil. Science 332:106–109

    Article  CAS  PubMed  Google Scholar 

  28. Bohannan BJM, Lenski RE (2000) Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol Lett 3:362–377

    Article  Google Scholar 

  29. Levin BR, Bull JJ (2004) Population and evolutionary dynamics of phage therapy. Nat Rev 2:166–173

    CAS  Google Scholar 

  30. Chrisolite B, Thiyagarajan S, Alavandi SV, Abhilash EC, Kalaimani N, Vijayan KK, Santiago TC (2008) Distribution of luminescent Vibrio harveyi and their bacteriophages in a commercial shrimp hatchery in South India. Aquaculture 275:13–19

    Article  Google Scholar 

  31. Karunasagar I, Pai R, Malathi GR, Karunasagar I (1994) Mass mortality of Penaeus monodon larvae due to antibiotic-resistant Vibrio harveyi infection. Aquaculture 128:203–209

    Article  Google Scholar 

  32. Otta S, Karunasagar I, Karunasagar I (2001) Bacteriological study of shrimp, Penaeus monodon Fabricius, hatcheries in India. J Appl Ichthyol 17:59–63. doi:10.1046/j.1439-0426.2001.00249.x

    Article  Google Scholar 

  33. Oliveira J, Castilho F, Cunha A, Pereira MJ (2012) Bacteriophage therapy as a bacterial control strategy in aquaculture. Aquac Int 20:879–910

    Article  Google Scholar 

  34. Tanji Y, Shimada T, Fukudomi H, Miyanaga K, Nakai Y, Unno H (2005) Therapeutic use of phage cocktail for controlling Escherichia coli O157:H7 in gastrointestinal tract of mice. J Biosci Bioeng 100:280–287. doi:10.1263/jbb.100.280

    Article  CAS  PubMed  Google Scholar 

  35. Carvalho CM, Gannon BW, Halfhide DE, Santos SB, Hayes CM, Roe JM, Azeredo J (2010) The in vivo efficacy of two administration routes of a phage cocktail to reduce numbers of Campyllobacter coli and Campyllobacter jejuni in chickens. BMC Microbiol 10:232

    Article  PubMed Central  PubMed  Google Scholar 

  36. Oliveira A, Sereno R, Azeredo J (2010) In vivo efficiency evaluation of a phage cocktail in controlling severe colibacillosis in confined conditions and experimental poultry houses. Vet Microbiol 146:303–308. doi:10.1016/j.vetmic.2010.05.015

    Article  PubMed  Google Scholar 

  37. Turki Y, Ouzari H, Mehri I, Ammar AB, Hassen A (2012) Evaluation of a cocktail of three bacteriophages for the biocontrol of Salmonella of wastewater. Food Res Int 45:1099–1105. doi:10.1016/j.foodres.2011.05.041

    Article  Google Scholar 

  38. Chan BK, Abedon ST (2012) Phage therapy pharmacology: phage cocktails. Adv Appl Microbiol 78:1–23

    Article  CAS  PubMed  Google Scholar 

  39. Hall AR, De Vos D, Friman V-P, Pirnay J-P, Buckling A (2012) Effects of sequential and simultaneous applications of bacteriophages on populations of Pseudomonas aeruginosa in vitro and in wax moth larvae. Appl Environ Microbiol 78:5646–5652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Buckling A, Wei Y, Massey RC, Brockhurst MA, Hochberg ME (2006) Antagonistic coevolution with parasites increases the cost of host deleterious mutations. Proc R Soc B Biol Sci 273:45–49. doi:10.1098/rspb.2005.3279

    Article  Google Scholar 

  41. Imbeault S, Parent S, Lagacé M, Uhland CF, Blais J-F (2006) Using bacteriophages to prevent furunculosis caused by Aeromonas salmonicida in farmed Brook trout. J Aquat Anim Heal 18:203–214

    Article  Google Scholar 

  42. Matsuoka S, Hashizume T, Kanzaki H et al (2007) Phage therapy against beta-hemolytic streptococcicosis of Japanese flounder Paralichthys olivaceus. Fish Pathol 42:181–189

    Article  Google Scholar 

  43. Wei Y, Kirby A, Levin BR (2011) The population and evolutionary dynamics of Vibrio cholerae and its bacteriophage: conditions for maintaining phage-limited communities. Am Nat 178:715–725. doi:10.1086/662677

    Article  PubMed  Google Scholar 

  44. Gottesman S (2011) Microbiology: dicing defense in bacteria. Nature 471:588–589

    Article  CAS  PubMed  Google Scholar 

  45. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170

    Article  CAS  PubMed  Google Scholar 

  46. Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8:317–327

    Article  CAS  PubMed  Google Scholar 

  47. Messenger SL, Molineux IJ, Bull JJ (1999) Virulence evolution in a virus obeys a trade off. Proc R Soc London, Ser B 266:397–404

    Article  CAS  Google Scholar 

  48. Gandon S, van Baalen M, Jansen VAA (2002) The evolution of parasite virulence, superinfection, and host resistance. Am Nat 159:658–669

    Article  PubMed  Google Scholar 

  49. Lenski RE, Levin BR (1985) Constraints on the coevolution of bacteria and virulent phage: a model, some experiments, and predictions for natural communities. Am Nat 125:585–602

    Article  Google Scholar 

  50. Morgan AD, Bonsall MB, Buckling A (2010) Impact of bacterial mutation rate on coevolutionary dynamics between bacteria and phages. Evolution 64:2980–2987

    PubMed  Google Scholar 

  51. Schrag ST, Mittler JE (1996) Host-parasite coexistence: the role of spatial refuges in stabilizing bacteria-phage interactions. Am Nat 148:348–377

    Article  Google Scholar 

  52. Lythgoe KA, Chao L (2003) Mechanisms of coexistence of a bacteria and a bacteriophage in a spatially homogeneous environment. Ecol Lett 6:326–334

    Article  Google Scholar 

  53. Fischer CR, Yoichi M, Unno H, Tanji Y (2004) The coexistence of Escherichia coli serotype O157:H7 and its specific bacteriophage in continuous culture. FEMS Microbiol Lett 241:171–177

    Article  CAS  PubMed  Google Scholar 

  54. Kashiwagi A, Yomo T (2011) Ongoing phenotypic and genetic changes in experimental coevolution of RNA bacteriophage Qβ and Escherichia coli. PLoS Genet 7(8):e1002188. doi:10.1371/journal.pgen.1002188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Koskella B, Lin DM, Buckling A, Thompson JN (2012) The costs of evolving resistance in heterogeneous parasite environments. Proc R Soc London, Ser B 279:1896–1903

    Article  Google Scholar 

Download references

Acknowledgments

We would like to give special thanks to CENIACUA, Banco de Santander award for innovative science and to the Facultad de Ciencias of Universidad de los Andes, Bogotá, Colombia for their financial support. We also want to thank Angus Buckling for the useful discussion and comments on the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Venail.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbosa, C., Venail, P., Holguin, A.V. et al. Co-Evolutionary Dynamics of the Bacteria Vibrio sp. CV1 and Phages V1G, V1P1, and V1P2: Implications for Phage Therapy. Microb Ecol 66, 897–905 (2013). https://doi.org/10.1007/s00248-013-0284-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0284-2

Keywords

Navigation