Skip to main content
Log in

Microbial Life and Death in a Foxing Stain: a Suggested Mechanism of Photographic Prints Defacement

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The gelatin-silver halide black and white prints represent an enormous photography heritage with a great value. Unaesthetic phenomena, the foxing stains that are caused by microbial growth on surface, have been described in stamps, drawings, books, and tissues but, until now, scarcely for photographic materials. In this study, a combination of various techniques, including culture-dependent and culture-independent approaches (RNA and DNA analysis), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and μ-Raman spectroscopy supported by X-ray fluorescence analysis (XRF), permitted to describe the microbial contamination dynamics of foxing stains present on the surface of two gelatin-silver halide photographs. The investigation provided also information on the effects of microbial activity on the materials’ chemistry of the two prints. The action of microbial community resulted locally in either (a) formation of mixed aluminum-iron-potassium phosphate compounds that could be attributed to the hydrolytic activity of bacteria, (b) leaching of barite, (c) precipitation of a mixture of oxides, and (d) a change in the barium sulfate chemical structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE (2005) Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 43:5721–5732

    Article  PubMed  PubMed Central  Google Scholar 

  2. Abrusci C, Marquina D, Del Amo A, Catalina F (2007) Biodegradation of cinematographic gelatin emulsion by bacteria and filamentous fungi using indirect impedance technique. Int Biodeterior Biodegradation 60:137–143

    Article  CAS  Google Scholar 

  3. Arai H (1987) Microbiological studies on the conservation of paper and related cultural properties. Part 5: physiological and morphological characteristics of fungi isolated from foxing, formation mechanisms and countermeasures. Sci Conserv 26:43–52

    Google Scholar 

  4. Arai H (2000) Foxing caused by fungi: twenty-five years of study. Int Biodeterior Biodegradation 46:181–188

    Article  CAS  Google Scholar 

  5. Ardizzone E, Dindo H, Mazzola G (2008) A set of low-level descriptors for images affected by foxing. In Proc. of the 16th European Signal Processing Conference (EUSIPCO). http://www.eurasip.org/Proceedings/Eusipco/Eusipco2008/

  6. Bansal V, Poddar P, Ahmad A, Sastry M (2006) Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. J. Am. Chem. Soc. 128:11958–11963

    Article  CAS  PubMed  Google Scholar 

  7. Borrego S, Lavin P, Perdomo I, Gómez de Saravia S, Guiamet P (2012) Determination of indoor air quality in archives and biodeterioration of the documentary heritage. ISRN Microbiol Article ID 680598, doi: 10.5402/2012/680598.

  8. Borrego S, Guiamet P, de Saravia SG, Batistini P, Garcia M, Lavin P, Perdomo I (2010) The quality of air at archives and the biodeterioration of photographs. Int Biodeterior Biodegradation 64:139–145

    Article  CAS  Google Scholar 

  9. Buchholz-Cleven BE, Rattunde B, Straub KL (1997) Screening for genetic diversity of isolates of anaerobic Fe (II)-oxidizing bacteria using DGGE and whole-cell hybridization. Syst. Appl. Microbiol. 20:301–309

    Article  Google Scholar 

  10. Bučková M, Puškárová A, Sclocchi MC, Bicchieri M, Colaizzi P, Pinzari F, Pangallo D (2014) Co-occurrence of bacteria and fungi and spatial partitioning during photographic materials biodeterioration. Polym. Degrad. Stab. 108:1–11

    Article  Google Scholar 

  11. Cocolin L, Aggio D, Manzano M, Cantoni C, Comi G (2002) An application of PCR-DGGE analysis to profile the yeast populations in raw milk. Int. Dairy J. 12:407–411

    Article  CAS  Google Scholar 

  12. Coluzza C, Bicchieri M, Monti M, Piantanida G, Sodo A (2008) Atomic force microscopy application for degradation diagnostics in library heritage. Surf. Interface Anal. 40:1248–1253

    Article  CAS  Google Scholar 

  13. Dusan S, Kaplan A (2013) The atlas of analytical signatures of photographic processes. Los Angeles, CA: Getty Conservation Institute. http://hdl.handle.net/10020/gci_pubs/atlas_analytical

  14. Florian MLE, Manning L (2000) SEM analysis of irregular fungal spot in an 1854 book: population dynamics and species identification. Int Biodeterior Biodegradation 46:205–220

    Article  Google Scholar 

  15. Gupta AK, Batra R, Bluhm R, Boekhout T, Dawson TL (2004) Skin diseases associated with Malassezia species. J. Am. Acad. Dermatol. 51:785–798

    Article  PubMed  Google Scholar 

  16. Karbowska-Berent J, Górny RL, Strzelczyk AB, Wlazło A (2011) Airborne and dust borne microorganisms in selected Polish libraries and archives. Build. Environ. 46:1872–1879

    Article  Google Scholar 

  17. Kucey RMN (1983) Phosphate solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Can. J. Soil Sci. 63:671–678

    Article  CAS  Google Scholar 

  18. Kraková L, Chovanová K, Selim SA, Šimonovičová A, Puškarová A, Maková A, Pangallo D (2012) A multiphasic approach for investigation of the microbial diversity and its biodegradative abilities in historical paper and parchment documents. Int Biodeterior Biodegradation 70:117–125

    Article  Google Scholar 

  19. Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73:331–371

    Article  CAS  PubMed  Google Scholar 

  20. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackenbrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley and Sons, New York, pp. 115–148

    Google Scholar 

  21. Lourenço MJ, Sampaio JP (2009) Microbial deterioration of gelatin emulsion photographs: differences of susceptibility between black and white and colour materials. Int Biodeterior Biodegradation 63:496–502

    Article  Google Scholar 

  22. Micheluz A, Manente S, Tigini V, Prigione V, Pinzari F, Ravagnan G, Varese GC (2015) The extreme environment of a library: xerophilic fungi inhabiting indoor niches. Int Biodeterior Biodegradation 99:1–7

    Article  Google Scholar 

  23. Montanari M, Melloni V, Pinzari F, Innocenti G (2012) Fungal biodeterioration of historical library materials stored in Compactus movable shelves. Int Biodeterior Biodegradation 75:83–88

    Article  CAS  Google Scholar 

  24. Nunes I, Mesquita N, Verde SC, Bandeira AML, Carolino MM, Portugal A, Botelho ML (2013) Characterization of an airborne microbial community: a case study in the archive of the University of Coimbra, Portugal. Int Biodeterior Biodegradation 79:36–41

    Article  CAS  Google Scholar 

  25. Pangallo D, Kraková L, Chovanová K, Bučková M, Puškarová A, Šimonovičová A (2013) Disclosing a crypt: microbial diversity and degradation activity of the microflora isolated from funeral clothes of Cardinal Peter Pázmány. Microbiol. Res. 168:289–299

    Article  CAS  PubMed  Google Scholar 

  26. Piantanida G, Pinzari F, Montanari M, Bicchieri M, Coluzza C (2006) Atomic force microscopy applied to the study of Whatman paper surface deteriorated by cellulolytic filamentous fungus. Macromol. Symp. 238:92–97

    Article  CAS  Google Scholar 

  27. Piñar G, Sterflinger K, Pinzari F (2015) Unmasking the measles-like parchment discoloration: molecular and microanalytical approach. Environ. Microbiol. 17:427–443

    Article  PubMed  Google Scholar 

  28. Puškárová A, Bučková M, Habalová B, Kraková L, Maková A, Pangallo D (2016) Microbial communities affecting albumen photography heritage: a methodological survey. Sci Rep 6:20810

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rakotonirainy MS, Arnold S (2008) Development of a new procedure based on the energy charge measurement using ATP bioluminescence assay for the detection of living mould from graphic documents. Luminescence 23:182–186

    Article  CAS  PubMed  Google Scholar 

  30. Skóra J, Gutarowska B, Pielech-Przybylska K, Stępień Ł, Pietrzak K, Piotrowska M, Pietrowski P (2015) Assessment of microbiological contamination in the work environments of museums, archives and libraries. Aerobiologia 31:389–401

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sneath PH, Sokal RR (1973) Numerical taxonomy. The principles and practices of numerical classification. WF Freeman and Co, San Francisco

    Google Scholar 

  32. Stanco F, Tenze L, Ramponi G (2005) Virtual restoration of vintage photographic prints affected by foxing and water blotches. J Electron Imaging 14:043008

    Article  Google Scholar 

  33. Troiano F, Polo A, Villa F, Cappitelli F (2014) Assessing the microbiological risk to stored sixteenth century parchment manuscripts: a holistic approach based on molecular and environmental studies. Biofouling 30:299–311

    Article  CAS  PubMed  Google Scholar 

  34. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, London, pp. 315–321

    Google Scholar 

  35. Yu X, Qian C, Wang X (2016) Morphology of barium hydrogen phosphate formation induced by phosphate-mineralization microbe. J Wuhan Univ Technol Mater Sci Ed 31:227–230

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financed by the Slovak VEGA Agency, project number: 2/0103/14 “Protecting our memories: investigation into the biodeterioration of photographic and cinematographic materials.”

We would like also to acknowledge Dr. Lavinia Ciuffa Acting Curator of the Photographic Archive of American Academy in Rome for her availability and for proving us the opportunity to study these interesting prints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Pangallo.

Electronic supplementary material

ESM 1

(DOC 68 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sclocchi, M.C., Kraková, L., Pinzari, F. et al. Microbial Life and Death in a Foxing Stain: a Suggested Mechanism of Photographic Prints Defacement. Microb Ecol 73, 815–826 (2017). https://doi.org/10.1007/s00248-016-0913-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0913-7

Keywords

Navigation