Skip to main content
Log in

Adsorption of bisphenol A by lactic acid bacteria, Lactococcus, strains

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Ten strains of the genus Lactococcus were examined for their ability to remove bisphenol A [2, 2-bis(4-hydroxyphenyl)propane; BPA], which is known as an endocrine disrupter. Nine strains of the lactococci tested could remove BPA from media during growth, although the removal ratio was below 9%. When BPA was incubated with lyophilized cells of lactococci for 1 h, the concentration of BPA in the media was decreased by 9–62%. Especially, the highest removal ratio of BPA was observed for Lactococcus lactis subsp. lactis 712. The lactococci could adsorb BPA but not degrade it, because the lactococci maintained the ability to remove BPA from the medium after autoclaving. When the lyophilized cells of L. lactis subsp. lactis 712 were also incubated with six analogues of BPA, they effectively adsorbed hydrophobic compounds such as 2, 2′-diphenylpropane and bisphenol A dimethylether. The BPA-adsorbing ability of lactococci could be due to the hydrophobic binding effect. The removal ratio of BPA by L. lactis subsp. lactis 712 was increased after treatment with sodium dodecyl sulfate and decreased after digestion with trypsin. These results suggest that the hydrophobic proteins on cell surface may be involved in the BPA-adsorbing ability of lactococci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Fukuda T, Uchida H, Takashima Y, Uwajima T, Kawabata T, Suzuki M (2001) Degradation of bisphenol A by purified laccase from Trametes villosa. Biochem Biophys Res Commun 384:704–706

    Article  Google Scholar 

  • Hirano T, Honda Y, Watanabe T, Kuwahara M (2000) Degradation of bisphenol A by the lignin-degrading enzyme, manganese peroxidase, produced by the white-rot basidiomycete, Pleurotus ostreatus. Biosci Biotechnol Biochem 64:1958–1962

    Article  CAS  Google Scholar 

  • Hosoda M, Hashimoto H, Morita H, Chiba M, Hosono A (1992a) Antimutagenicity of milk cultured with lactic acid bacteria against N-methyl-N′-nitro-N-nitrosoguanidine. J Dairy Sci 75:976–981

    Article  CAS  Google Scholar 

  • Hosoda M, Hashimoto H, Morita H, Chiba M, Hosono A (1992b) Studies on antimutagenic effect of milk cultured with lactic acid bacteria on the Trp-P-2 induced mutagenicity to TA98 strain of Salmonella typhimurium. J Dairy Res 59:543–549

    Article  CAS  Google Scholar 

  • Hosono A, Tono-oka T (1995) Binding of cholesterol with lactic acid bacteria cells. Milchwissenschaft 50:556–560

    CAS  Google Scholar 

  • Kang JH, Kondo F (2002) Bisphenol A degradation by bacteria isolated from river water. Arch Environ Contam Toxicol 43:265–269

    Article  CAS  Google Scholar 

  • Kawamura Y, Koyano Y, Takeda Y, Yamada T (1998) Migration of bisphenol A from polycarbonate products (Japanese). J Food Hyg Soc Jpn 39:206–212

    Article  CAS  Google Scholar 

  • Kimoto H, Kurisaki J, Tsuji NM, Ohmomo S, Okamoto T (1999) Lactococci as probiotics strains: adhesion to human enterocyte-like Caco-2 cells and tolerance to low pH and bile. Lett Appl Microbiol 29:313–316

    Article  CAS  Google Scholar 

  • Kimoto H, Ohmomo S, Okamoto T (2002) Cholesterol removal from media by lactococci. J Dairy Sci 85:3182–3188

    Article  CAS  Google Scholar 

  • Kimoto H, Nomura M, Kobayashi M, Mizumachi K, Okamoto T (2003) Survival of lactococci during passage through mouse digestive tract. Can J Microbiol 49:707–711

    Article  CAS  Google Scholar 

  • Krishnan AV, Stathis P, Permuth SF, Tokes L, Feldman D (1993) Bisphenol A: an estrogenic substances is released from polycarbonate flasks during autoclaving. Endocrinology 132:2279–2286

    Article  CAS  Google Scholar 

  • Lobos JH, Leib TK, Su TM (1992) Biodegradation of bisphenol A and other bisphenols by a gram-negative aerobic bacterium. Appl Environ Microbiol 58:1823–1831

    Article  CAS  Google Scholar 

  • Mergler M, Wolf K, Zimmermann M (2004) Development of bisphenol A-adsorbing yeast by surface display of the Kluyveromyces yellow enzyme on Pichia pastoris. Appl Microbiol Biotechnol 63:418–421

    Article  CAS  Google Scholar 

  • Nagel SC, von Saal FS, Thayer CA, Dhar MG, Boechler M, Welshons WV (1997) Relative binding affinity-serum modified access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol. Environ Health Perspect 105:70–76

    Article  CAS  Google Scholar 

  • Ohko Y, Ando I, Niwa C, Tatsuma T, Yamamura T, Nakashima T, Kubota Y, Fujishima A (2001) Degradation of bisphenol A in water by TiO2 photocatalyst. Environ Sci Technol 35:2365–2368

    Article  CAS  Google Scholar 

  • Peltonen K, El-Nezami H, Haskard C, Ahokas J, Salminen S (2001) Aflatoxin B1 binding by dairy strains of lactic acid bacteria and bifidobacteria. J Dairy Sci 84:2152–2156

    Article  CAS  Google Scholar 

  • Ronen Z, Abeliovich A (2000) Anaerobic–aerobic process for microbial degradation of tetrabromobisphenol A. Appl Environ Microbiol 66:2372–2377

    Article  CAS  Google Scholar 

  • Sakai K, Yamanaka H, Moriyoshi K, Ohmoto T, Ohe T (2003) Degradation of bisphenol A by microorganisms isolated from sea water (Japanese). Kagaku to Kogyo 77:156–161

    CAS  Google Scholar 

  • Sakurai A, Toyoda S, Sakakibara M (2001) Removal of bisphenol A by polymerization and precipitation method using Corpinus cinereus peroxidase. Biotechnol Lett 23:995–998

    Article  CAS  Google Scholar 

  • Sakuyama H, Endo Y, Fujimoto K (2003) Oxidative degradation of alkylphenols by horseradish peroxidase. J Biosci Bioeng 96:227–231

    Article  CAS  Google Scholar 

  • Sakuyama H, Endo Y, Fujimoto K (2004) Degradation of alkylphenols by peroxidase with linoleic acid hydroperoxides (Japanese). J Environ Chem 14:567–573

    Article  CAS  Google Scholar 

  • Spivack J, Leib TK, Lobos JH (1994) Novel pathway for bacterial metabolism of bisphenol A. J Biol Chem 269:7233–7239

    Google Scholar 

  • Tanabe T, Suyama K, Hosono A (1994) Effect of sodium dodesylsulphate on the binding of Lactococcus lactis subsp. lactis T-80 cells with Trp-P-1. J Dairy Res 61:311–315

    Article  CAS  Google Scholar 

  • Tanaka T, Yamada K, Tonosaki T, Konishi T, Goto H, Taniguchi M (2000) Enzymatic degradation of alkylphenols, bisphenol A, synthetic estrogen and phthalic ester. Water Sci Technol 42:89–95

    Article  CAS  Google Scholar 

  • Tanaka T, Tonosaki T, Nose M, Tomidokoro N, Kadomura N, Fujii T, Taniguchi M (2001) Treatment of model soils contaminated with phenolic endocrine-disrupting chemicals with laccase from Trametes sp. In a rotating reactor. J Biosci Bioeng 92:312–316

    Article  CAS  Google Scholar 

  • Xuan YJ, Endo Y, Fujimoto K (2002) Oxidative degradation of bisphenol A by crude enzyme prepared from potato. J Agric Food Chem 50:6575–6578

    Article  CAS  Google Scholar 

  • Yoshida M, Ono H, Mori Y, Chuda Y, Onishi K (2001a) Oxidation of bisphenol A and related compounds. Biosci Biotechnol Biochem 65:1444–1446

    Article  CAS  Google Scholar 

  • Yoshida T, Horie M, Hoshino Y, Nakagawa H (2001b) Determination of bisphenol A in canned vegetables and fruit by high performance liquid chromatography. Food Addit Contam 18:69–67

    Article  CAS  Google Scholar 

  • Yoshida M, Ono H, Mori Y, Chuda Y, Mori M (2002) Oxygenation of bisphenol A to quinines by polyphenol oxidase in vegetables. J Agric Food Chem 50:4377–4381

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Endo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endo, Y., Kimura, N., Ikeda, I. et al. Adsorption of bisphenol A by lactic acid bacteria, Lactococcus, strains. Appl Microbiol Biotechnol 74, 202–207 (2007). https://doi.org/10.1007/s00253-006-0632-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0632-y

Keywords

Navigation