Skip to main content
Log in

Cellulase production by Aspergillus niger in biofilm, solid-state, and submerged fermentations

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cellulase production by Aspergillus niger was compared in three different culture systems: biofilm, solid-state, and submerged fermentation. Biofilm and solid-state fermentations were carried out on perlite as inert support, and lactose was used as a carbon source in the three culture systems. In cryo-scanning electron microscopy, biofilm and solid-state cultures gave similar morphological patterns and confirmed that both spore first attachment and hyphal adhered growth are helped by the production of an adhesive extracellular matrix. Biofilm cultures produced higher cellulase activities than those in submerged and solid-state cultures (1,768, 1,165, and 1,174 U l−1, respectively). Although biofilm cultures grew less than the other cultures, they produced significantly higher cellulase yields (370, 212, and 217 U g−1 lactose, respectively) and volumetric productivities (24, 16, and 16 U l−1 h−1, respectively). Likewise, endoglucanase and xylanase activities were higher in biofilm cultures. Under the conditions tested, it seems that fungal attached growth on perlite may favor better enzyme production. Biofilms are efficient systems for cellulase production and may replace solid-state fermentation. Biofilm fermentation holds promise for further optimization and development. The results of this work reveal that fungal biofilms may be used for the commercial production of cellulase employing the technology developed for submerged fermentation at high cell densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akao T, Gomi K, Goto K, Okazaki N, Akita O (2002) Subtractive cloning of cDNA from Aspergillus oryzae differentially regulated between solid-state culture and liquid (submerged) culture. Curr Genet 41:275–281

    Article  CAS  Google Scholar 

  • Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383

    Article  CAS  Google Scholar 

  • Biesebeke R, Ruijter G, Rahardjo YSP, Hoogschagen MJ, Heerikhuisen M, Levin A, van Driel KG, Schutyser MA, Dijksterhuis J, Zhu Y, Weber FJ, de Vos WM, van den Hondel KA, Rinzema A, Punt PJ (2002) Aspergillus oryzae in solid state and submerged fermentations: progress report on a multidisciplinary project. FEMS Yeast Res 2:245–248

    Article  Google Scholar 

  • Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opinion Biotechnol 14:438–443

    Article  CAS  Google Scholar 

  • Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628

    Article  CAS  Google Scholar 

  • Ghose T (1987) Measurement of cellulolytic activities. Pure Appl Chem 59:257–258

    Article  CAS  Google Scholar 

  • Grimm LH, Kelly S, Krull R, Hempel DC (2005) Morphology and productivity of filamentous fungi. Appl Microbiol Biotechnol 69:375–384

    Article  CAS  Google Scholar 

  • Gutiérrez-Correa M, Villena GK (2003) Surface adhesion fermentation: a new fermentation category. Rev Peru Biol 10:113–124

    Google Scholar 

  • Harding MW, Marques LLR, Howard RJ, Olson ME (2009) Can filamentous fungi form biofilms? Trends Microbiol 17:475–480

    Article  CAS  Google Scholar 

  • Hölker U, Höfer M, Lenz J (2004) Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol 64:175–186

    Article  CAS  Google Scholar 

  • Iqbal M, Saeed A (2005) Novel method for cell immobilization and its application for production of organic acid. Lett Appl Microbiol 40:178–182

    Article  CAS  Google Scholar 

  • Kaup B-A, Ehrich K, Pescheck M, Schrader J (2008) Microparticle-enhanced cultivation of filamentous microorganisms: increased chloroperoxidase formation by Caldariomyces fumago as an example. Biotechnol Bioeng 99:491–498

    Article  CAS  Google Scholar 

  • Krishna C (2005) Solid-state fermentation systems—an overview. Crit Rev Biotechnol 25:1–30

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Luedeking R, Piret EL (1959) A kinetic study of the lactic acid fermentation batch process at controlled pH. J Biochem Microbiol Tech Eng 1:393–412

    Article  CAS  Google Scholar 

  • Ma H, Snook LA, Kaminskyj SGW, Dahms TES (2005) Surface ultrastructure and elasticity in growing tips and mature regions of Aspergillus hyphae describe wall maturation. Microbiology 151:3679–3688

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Mowat E, Williams C, Jones B, McChlery S, Ramage G (2008) The characteristics of Aspergillus fumigatus mycetoma development: is this a biofilm? Med Mycol 47(Suppl 1):S1–S7

    Google Scholar 

  • Ooijkaas LP, Weber FJ, Buitelaar RM, Tramper J, Rinzema A (2000) Defined media and inert supports: their potential as solid-state fermentation production systems. Trends Biotechnol 18:356–360

    Article  CAS  Google Scholar 

  • O’Toole G, Kaplay HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79

    Article  Google Scholar 

  • Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22:189–259

    Article  CAS  Google Scholar 

  • Papagianni M, Mattey M (2004) Physiological aspects of free and immobilized Aspergillus niger cultures producing citric acid under various glucose concentrations. Proc Biochem 39:1963–1970

    Article  CAS  Google Scholar 

  • Papagianni M, Joshi N, Moo-Young M (2002) Comparative studies on extracellular protease secretion and glucoamylase production by free and immobilized Aspergillus niger cultures. J Ind Microbiol Biotechnol 29:259–263

    Article  CAS  Google Scholar 

  • Ramage G, Mowat E, Jones B, Williams C, Lopez-Ribot J (2009) Our current understanding of fungal biofilms. Crit Rev Microbiol 35:340–355

    Article  CAS  Google Scholar 

  • Seidler MJ, Salvenmoser S, Müller F-MC (2008) Aspergillus fumigatus forms biofilms with reduced antifungal drug susceptibility on bronchial epithelial cells. Antimicrob Agents Chemother 52:4130–4136

    Article  CAS  Google Scholar 

  • Skowronek M, Fiedurek J (2006) Inulinase biosynthesis using immobilized mycelium of Aspergillus niger. Enzyme Microb Technol 38:162–167

    Article  CAS  Google Scholar 

  • Talabardon M, Yang S-T (2005) Production of GFP and glucoamylase by recombinant Aspergillus niger: effects of fermentation conditions on fungal morphology and protein secretion. Biotechnol Prog 21:1389–1400

    Article  CAS  Google Scholar 

  • Téllez-Jurado A, Arana-Cuenca A, González-Becerra AE, Viniegra-González G, Loera O (2006) Expression of a heterologous laccase by Aspergillus niger culture by solid-state and submerged fermentations. Enzyme Microb Technol 38:665–669

    Article  CAS  Google Scholar 

  • Villena GK, Gutiérrez-Correa M (2006) Production of cellulase by Aspergillus niger biofilms developed on polyester cloth. Lett Appl Microbiol 43:262–268

    Article  CAS  Google Scholar 

  • Villena GK, Gutiérrez-Correa M (2007) Morphological patterns of Aspergillus niger biofilms and pellets related to lignocellulolytic enzyme productivities. Lett Appl Microbiol 45:231–237

    Article  CAS  Google Scholar 

  • Villena GK, Fujikawa T, Tsuyumu S, Gutiérrez-Correa M (2009a) Differential gene expression of some lignocellulolytic enzymes in Aspergillus niger biofilms. Rev Peru Biol 15:97–102

    Google Scholar 

  • Villena GK, Venkatesh L, Yamazaki A, Tsuymu S, Gutiérrez-Correa M (2009b) Initial intracellular proteome profile of Aspergillus niger biofilms. Rev Peru Biol 16:101–108

    Google Scholar 

  • Villena GK, Fujikawa T, Tsuyumu S, Gutiérrez-Correa M (2010) Structural analysis of biofilms and pellets of Aspergillus niger by confocal laser 3 scanning microscopy and cryo scanning electron microscopy. Bioresour Technol 101:1920–1926

    Article  CAS  Google Scholar 

  • Viniegra-González G, Favela-Torres E, Aguilar CN, Romero-Gómez SJ, Díaz-Godínez G, Augur C (2003) Advantages of fungal enzyme production in solid-state over liquid fermentation systems. Biochem Eng J 13:157–167

    Article  Google Scholar 

  • Wang Z-W, Chen S (2009) Potential of biofilm-based biofuel production. Appl Microbiol Biotechnol 83:1–18

    Article  CAS  Google Scholar 

  • Wang L, Ridgway D, Gu T, Moo-Young M (2003) Effects of process parameters on heterologous protein production in Aspergillus niger fermentation. J Chem Technol Biotechnol 78:1259–1266

    Article  CAS  Google Scholar 

  • Wimpenny J, Manz W, Szewzyk U (2000) Heterogeneity in biofilms. FEMS Microbiol Lett 24:661–671

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by INCAGRO (Ministry of Agriculture, Peru). The authors wish to thank CERTINTEX (Lima, Peru) for the use of its SEM facilities and Mr. Gianangelo Nava (CERTINTEX) for his SEM technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Gutiérrez-Correa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamarra, N.N., Villena, G.K. & Gutiérrez-Correa, M. Cellulase production by Aspergillus niger in biofilm, solid-state, and submerged fermentations. Appl Microbiol Biotechnol 87, 545–551 (2010). https://doi.org/10.1007/s00253-010-2540-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2540-4

Keywords

Navigation