Skip to main content
Log in

Biogenic selenium nanoparticles: current status and future prospects

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Selenium nanoparticles (SeNPs) are gaining importance in the field of medicine owing to their antibacterial and anticancer properties. SeNPs are biocompatible and non-toxic compared to the counterparts, selenite (SeO3 −2) and selenate (SeO4 −2). They can be synthesized by physical, chemical, and biological methods and have distinct bright orange-red color. Biogenic SeNPs are stable and do not aggregate owing to natural coating of the biomolecules. Various hypotheses have been proposed to describe the mechanism of microbial synthesis of SeNPs. It is primarily a two-step reduction process from SeO4 −2 to SeO3 −2 to insoluble elemental selenium (Se0) catalyzed by selenate and selenite reductases. Phenazine-1-carboxylic acid and glutathione are involved in selenite reduction. Se factor A (SefA) and metalloid reductase Rar A present on the surface of SeNPs confer stability to the nanoparticles. SeNPs act as potent chemopreventive and chemotherapeutic agents. Conjugation with antibiotics enhances their anticancer efficacy. These also have applications in nanobiosensors and environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad MS, Yasser MM, Sholkamy EN, Ali AM, Mehanni MM (2015) Anticancer activity of biostabilized selenium nanorods synthesized by Streptomyces bikiniensis strain Ess_amA-1. Int J Nanomedicine 10:3389–3401

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ali EN, El-Sonbaty SM, Salem FM (2013) Evaluation of selenium nanoparticles as a potential chemopreventive agent against lung carcinoma. Int J Pharm Biol Sci 2(4):38–46

    Google Scholar 

  • Ayano H, Miyake M, Terasawa K, Kuroda M, Soda S, Sakaguchi T, Ike M (2014) Isolation of a selenite-reducing and cadmium-resistant bacterium Pseudomonas sp. strain RB for microbial synthesis of CdSe nanoparticles. J Biosci Bioeng 117:576–581

    Article  PubMed  CAS  Google Scholar 

  • Bajaj M, Schmidt S, Winter J (2012) Formation of Se (0) nanoparticles by Duganella sp. and Agrobacterium sp. isolated from Se-laden soil of north-east Punjab, India. Microb Cell Fact 11:64

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Barnaby S, Frayne S, Fath K, Banerjee I (2011) Growth of Se nanoparticles on kinetin assemblies and their biocompatibility studies. Soft Mater 9:313–334

    Article  CAS  Google Scholar 

  • Beheshti N, Soflaei S, Shakibaie M, Yazdi M, Ghaffarifar F, Dalimi A, Shahverdi AR (2013) Efficacy of biogenic selenium nanoparticles against Leishmania major: in vitro and in vivo studies. J Trace Elem Med Biol 27:203–207

    Article  PubMed  CAS  Google Scholar 

  • Benko I, Nagy G, Tanczos B, Ungvari E, Sztrik A, Eszenyi P, Prokisch J, Banfalvi G (2012) Subacute toxicity of nano-selenium compared to other selenium species in mice. Environ Toxicol Chem 31:2812–2820

    Article  PubMed  CAS  Google Scholar 

  • Biswas K, Barton L, Tsui W, Shuman K, Gillespie J, Eze C (2011) A novel method for the measurement of elemental selenium produced by bacterial reduction of selenite. J Microbiol Methods 86:140–144

    Article  PubMed  CAS  Google Scholar 

  • Bo Li D, Cheng Y, Wu C, Li W, Li N, Yang Z, Tong Z, Yu H (2014) Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm. Sci Rep 4:3735

    Google Scholar 

  • Butler C, Debieux C, Dridge E, Splatt P, Wright M (2012) Biomineralization of selenium by the selenate-respiring bacterium Thauera selenatis. Biochem Soc Trans 40:1239–1243

    Article  PubMed  CAS  Google Scholar 

  • Bѐ bien M, Kirsch J, Mѐ jean V, Vermѐ glio A (2002) Involvement of a putative molybdenum enzyme in the reduction of selenate by Escherichia coli. Microbiology 148:3865–3872

    Article  Google Scholar 

  • Chen T, Wong Y, Zheng W, Bai Y, Huang L (2008) Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells. Colloids Surf B Biointerf 67:26–31

    Article  CAS  Google Scholar 

  • Debieux C, Dridge E, Mueller C, Splatt P, Paszkiewicz K, Knight I, Florance R, Love J, Titball RW, Lewis RJ, Richardson DJ, Butler CS (2011) A bacterial process for selenium nanosphere assembly. Proc Nat Acad Sci 108:13481

    Article  Google Scholar 

  • Deshpande L, Kapadnis B, Chopade BA (1993) Metal resistance in Acinetobacter and its relation to beta-lactamase production. Biometals 6(1):55–59

    Article  PubMed  CAS  Google Scholar 

  • Dhanjal S, Cameotra S (2010) Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb Cell Factories 9:52

    Article  CAS  Google Scholar 

  • Dobias J, Suvorova EI (2011) Role of proteins in controlling selenium nanoparticle size. Nanotechnology 22:195605

    Article  PubMed  CAS  Google Scholar 

  • Domokos-Szabolcsy E, Marton L, Sztrik A, Babka B, Prokisch J, Fari M (2012) Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum. Plant Growth Regul 68:525–31

  • Dungan R, Yates S, Frankenberger W (2003) Transformations of selenate and selenite by Stenotrophomonas maltophilia isolated from a seleniferous agricultural drainage pond sediment. Environ Microbiol 25:287–295

    Article  Google Scholar 

  • Dwivedi C, Shah C, Singh K, Kumar M, Bajaj P (2011) An organic acid-induced synthesis and characterization of selenium. Nanopart J Nanotechnol 2011:doi:10.1155/2011/651971

  • Dwivedi S, Alkhedhairy A, Ahamed M, Musarrat J (2013) Biomimetic synthesis of selenium nanospheres by bacterial strain JS-11 and its role as a biosensor for nanotoxicity assessment: a novel Se-bioassay. PLoS One 8:1–10

    Google Scholar 

  • Fellowes J, Pattrick R, Green D, Dent A, Lloyd J, Pearce C (2011) Use of biogenic and abiotic elemental selenium nanospheres to sequester elemental mercury released from mercury contaminated museum specimens. J Hazard Mater 189:660–669

    Article  PubMed  CAS  Google Scholar 

  • Forootanfara H, Mahboubeh A, Maryam N, Mitra M, Bagher A, Ahmad S (2013) Antioxidant and cytotoxic effect of biologically synthesized selenium nanoparticles in comparison to selenium dioxide. J Trace Elem Med Biol doi:10.1016/j.jtemb.2013.07.005

  • Forootanfara H, Zare B, Fasihi-Bam H, Amirpour-Rostami S, Ameri A, Shakibaie M, Torabi Nami M (2014) Biosynthesis and characterization of selenium nanoparticles produced by terrestrial actinomycete Streptomyces microflavus strain FSHJ31. Res Rev J Microbiol Biotechnol 3(1):47–53

    Google Scholar 

  • Gaidhani S, Singh R, Singh D, Patel U, Shevade K, Yeshvekar R, Chopade BA (2013) Biofilm disruption activity of silver nanoparticles synthesized by Acinetobacter calcoaceticus PUCM 1005. Mater Lett 108:324–327

    Article  CAS  Google Scholar 

  • Gaidhani S, Yeshvekar RV, Shedbalkar US, Bellare JH, Chopade BA (2014) Bio-reduction of hexachloroplatinic acid to platinum nanoparticles employing Acinetobacter calcoaceticus. Process Biochem 49:2313–2319

    Article  CAS  Google Scholar 

  • Gao X, Kong L. Treatment of cancer with selenium nanoparticles. 2011; US2011/0262564A1

  • Garbisu C, Carlson D, Adamkiewicz M, Yee B, Wong J, Resto E, Leighton T, Buchanan BB (1999) Morphological and biochemical responses of Bacillus subtilis to selenite stress. Biofactors 110:311–319

    Article  Google Scholar 

  • Garbisu C, Gonzalez S, Yang W, Yee B, Carlson D, Yee A, Smith NR, Otero R, Leighton T, Buchanan BB (1995) Physiological mechanisms regulating the conversion of selenite to elemental selenium by Bacillus subtilis. Biofactors 5:29–37

    PubMed  CAS  Google Scholar 

  • Garbisu C, Ishii T, Leighton T, Buchanan BB (1996) Bacterial reduction of selenite to elemental selenium. Chem Geol 199–204

  • Gerrard T, Telford J, Williams H (1974) Detection of selenium deposits in Escherichia coli by electron microscopy. J Bacreriol 119:1057–1060

    CAS  Google Scholar 

  • Gharieb M, Wilkinson S, Gadd G (1995) Reduction of selenium oxyanions by unicellular, polymorphic and filamentous fungi: cellular location of reduced selenium and implications for tolerance. J Ind Microbiol 14:300–311

    Article  CAS  Google Scholar 

  • Ghosh S, Patil S, Ahire M, Kitture R, Kale S, Pardesi K, Cameotra SS, Bellare J, Dhavale DD, Jabgunde A, Chopade BA (2012a) Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int J Nanomedicine 7:483–496

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ghosh S, Patil S, Ahire M, Kitture R, Gurav DD, Jabgunde AM, Kale S, Pardesi K, Shinde V, Bellare J, Dhavale DD, Chopade BA (2012b) Gnidia glauca flower extract mediated synthesis of gold nanoparticles and evaluation of its chemocatalytic potential. J Nanobiotechnol 10:17

    Article  CAS  Google Scholar 

  • Ghosh S, Jagtap S, More P, Shete UJ, Maheshwari NO, Rao SJ, Kitture R, Kale S, Bellare J, Patil S, Pal JK, Chopade BA (2015) Dioscorea bulbifera mediated synthesis of novel Aucore Agshell nanoparticles with potent antibiofilm and antileishmanial activity. doi:10.1155/2015/562938

  • Gregorio S, Lampis S, Vallini G (2005) Selenite precipitation by a rhizospheric strain of Stenotrophomonas sp. isolated from the root system of Astragalus bisulcatus: a biotechnological perspective. Environ Int 31:233–241

    Article  PubMed  CAS  Google Scholar 

  • Guymer D, Maillard J, Sargent F (2009) A genetic analysis of in vivo selenate reduction by Salmonella enterica serovar Typhimurium LT2 and Escherichia coli K12. Arch Microbiol 191:519–528

    Article  PubMed  CAS  Google Scholar 

  • Hariharan H, Al-harbi N, Karuppiah P, Rajaram S (2012) Microbial synthesis of selenium nanocomposite using Saccharomyces cerevisiae and its antimicrobial activity against pathogens causing nosocomial infection. Chalcogenide Lett 9:509–515

    CAS  Google Scholar 

  • Hnain A, Brooks J, Lefebvre DD (2013) The synthesis of elemental selenium particles by Synechococcus leopoliensis. Appl Microbiol Biotechnol 97:10511–10519

    Article  PubMed  CAS  Google Scholar 

  • Hong Lin Z, Chu Lin F, Wang C (2004) Observation in the growth of selenium nanoparticles. J Chin Chem Soc 51:239–242

    Article  Google Scholar 

  • Hu C, Li Y, Xiong L, Zhang H, Song J, Xia M (2012) Comparative effects of nano elemental selenium and sodium selenite on selenium retention in broiler chickens. Anim Feed Sci Technol 177:204–210

    Article  CAS  Google Scholar 

  • Hunter W, Kuykendall L (2007) Reduction of selenite to elemental red selenium by Rhizobium sp. strain B1. Curr Microbiol 55:344–349

    Article  PubMed  CAS  Google Scholar 

  • Husen A, Siddiqi KS (2014) Plants and microbes assisted selenium nanoparticles: characterization and application. J of Nanobiotechnol 12:28

    Article  CAS  Google Scholar 

  • Iranifam M, Fathinia M, Sadeghi T, Hanifehpour Y, Khataee A, Joo S (2013) A novel selenium nanoparticles-enhanced chemiluminescence system for determination of dinitrobutylphenol. Talanta 107:263–269

    Article  PubMed  CAS  Google Scholar 

  • Jayaweera GR, Biggar J (1996) Role of redox potential in chemical transformations of selenium in soils. Soil Science Soc American J 60:1056–1063

    Article  CAS  Google Scholar 

  • Jiang S, Cuong T, Lee J, Duong H, Han S, Hur H (2012) Mercury capture into biogenic amorphous selenium nanospheres produced by mercury resistant Shewanella putrefaciens. Chemosphere 87:621–624

    Article  PubMed  CAS  Google Scholar 

  • Kaur G, Iqbal M, Bakshi M (2009) Biomineralization of fine selenium crystalline rods and amorphous spheres. J Phys Chem 113:13670–13676

    Article  CAS  Google Scholar 

  • Kazempour Z, Hossein M, Yazdi F, Shahverdi A (2013) Sub-inhibitory concentration of biogenic selenium nanoparticles lacks post antifungal effect for Aspergillus niger and Candida albicans and stimulates the growth of Aspergillus niger. Iranian J Microbiol 5:81–85

    Google Scholar 

  • Kessi J, Ramuz M, Wehrli E, Spycher M, Bachofen R (1999) Reduction of selenite and detoxification of elemental selenium by the phototrophic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 65:4734–4740

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kessi J, Hanselmann K (2004) Similarities between the abiotic reduction of selenite with glutathione and the dissimilatory reaction mediated by Rhodospirillum rubrum and Escherichia coli. J Biol Chem 279:50662–50669

    Article  PubMed  CAS  Google Scholar 

  • Kessi J (2006) Enzymic systems proposed to be involved in the dissimilatory reduction of selenite in the purple non-sulfur bacteria Rhodospirillum rubrum and Rhodobacter capsulatus. Microbiology 152:731–743

    Article  PubMed  CAS  Google Scholar 

  • Kitture R, Chordiya K, Gaware S, Ghosh S, More PA, Kulkarni P, Chopade BA, Kale SN (2015) ZnO nanoparticles-red sandalwood conjugate: a promising anti-diabetic agent. J Nanosci Nanotechnol 15(6):4046–4051

    Article  PubMed  CAS  Google Scholar 

  • Krafft T, Bowen A, Theis F, Macy J (2000) Cloning and sequencing of the genes encoding the periplasmic cytochrome B-containing selenate reductase of Thauera selenatis. DNA Seq 10:365–377

    Article  PubMed  CAS  Google Scholar 

  • Lampis S, Zonaro E, Bertolini C, Bernardi P, Butler C, Vallini G (2014) Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeITE01 as a consequence of selenite reduction under aerobic conditions. Microb Cell Factories 13:35

    Article  CAS  Google Scholar 

  • Lampis S, Zonaro E, Santi C, Ferrari A, Vallini G (2012) Bacterial biosynthesis of selenium nanoparticles by environmental isolates of Stenotrophomonas maltophilia. Environ Eng Manag J 3:S20

    Google Scholar 

  • Lenz M, Aelst A, Smit M, Corvini P, Lens P (2009) Biological production of selenium nanoparticles from waste waters. Adv Mater Res 73:721–724

    Article  Google Scholar 

  • Lenz M, Kolvenbach B, Gygax B, Moes S, Corvini P (2011) Shedding light on selenium biomineralization: proteins associated with bionanominerals. Appl Environ Microbiol 77:4676–4680

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li S, Shen Y, Xie A, Yu X, Zhang X, Yang L, Li C (2007) Rapid, room-temperature synthesis of amorphous selenium/protein composites using Capsicum annuum L extract. Nanotechnology 18:405101

    Article  CAS  Google Scholar 

  • Li H, Zhang J, Wang T, Luo W, Zhou Q, Jiang G (2008) Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: a comparison with sodium selenite. Aquat Toxicol 89:251–256

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Li X, Wong YS, Chen T, Zhang H, Liu C, Zheng W (2011) The reversal of cisplatin-induced nephrotoxicity by selenium nanoparticles functionalized with 11-mercapto-1-undecanol by inhibition of ROS-mediated apoptosis. Biomaterials 2(34):9068–9076

    Article  CAS  Google Scholar 

  • Lortie L, Gould WD, Rajan S, McCready RG, Cheng KJ (1992) Reduction of selenate and selenite to elemental selenium by a Pseudomonas stutzeri isolate. Appl Environ Microbiol 58:4042–4044

    PubMed Central  PubMed  CAS  Google Scholar 

  • Losi M, Frankenberger W (1997) Reduction of selenium oxyanions by Enterobacter cloacae SLD1a-1: isolation and growth of the bacterium and its expulsion of selenium particles. Appl Environ Microbiol 63:3079–3084

    PubMed Central  PubMed  CAS  Google Scholar 

  • Luo H, Wang F, Bai Y, Chen T, Zheng W (2012) Selenium nanoparticles inhibit the growth of HeLa and MDA-MB-231 cells through induction of S phase arrest. Colloids Surf B: Biointerf 94:304–308

    Article  CAS  Google Scholar 

  • Ma J, Kobayashi DY, Yee N (2009) Role of menaquinone biosynthesis genes in selenate reduction by Enterobacter cloacae SLD1a-1 and Escherichia coli K12. Environ Microbiol 11:149–158

    Article  PubMed  CAS  Google Scholar 

  • Mahmoudvand H, Harandi M, Shakibaie M, Aflatoonian M, ZiaAli N, Makki M, Makki M, Jahanbakhsha S (2014) Scolicidal effects of biogenic selenium nanoparticles against protoscolices of hydatid cysts. Int J Surg 12:5399–5403

    Article  Google Scholar 

  • Mittal M, Chisti Y, Banerjee U (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Advances 31:346–356

    Article  CAS  Google Scholar 

  • Nancharaiah YV, Lens PNL (2015a) Selenium biomineralization for biotechnological applications. Trends Biotechnol doi:10.1016/j.tibtech.2015.03.004

  • Nancharaiah YV, Lens PNL (2015b) Ecology and biotechnology of selenium-respiring bacteria. Microbiol Mol Biol Rev 79(1):61–80

    Article  PubMed  CAS  Google Scholar 

  • Oremland R, Herbe M, Blum J, Langley S, Beveridge T, Ajayan P, Sutto PT, Ellis AV, Curran S (2004) Structural and spectral features of selenium nanospheres produced by se-respiring bacteria. Appl Environ Microbiol 70:52–60

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Overschelde O, Guisbiers G, Snyders R (2013) Green synthesis of selenium nanoparticles by excimer pulsed laser ablation in water. Appl Mater 1:042114

    Article  CAS  Google Scholar 

  • Pearce C, Coker V, Charnock J, Pattrick R, Mosselmans J, Law N, Beveridge TJ, Lloyd JR (2008) Microbial manufacture of chalcogenide-based nanoparticles via the reduction of selenite using Veillonella atypica: an in situ EXAFS study. Nanotechnology 19:155603

    Article  PubMed  CAS  Google Scholar 

  • Peng D, Zhang J, Liu Q, Taylor E (2007) Size effect of elemental selenium nanoparticles (Nano-Se) at supranutritional levels on selenium accumulation and glutathione S-transferase activity. J Inorg Biochem 101:1457–1463

    Article  PubMed  CAS  Google Scholar 

  • Pickett TM, Yanguo MA, Sonstegard J, Kain J, Vuong D, Frased DB (2013) Selenium removal using chemical oxidation and biological reduction. US 0270181 A1

  • Prasad S, Vyas P, Prajapati V, Patel P, Selvaraj K (2012) Biomimetic synthesis of selenium nanoparticles using cell-free extract of Microbacterium sp. ARB05. Micro Nano Lett 8:11

    Google Scholar 

  • Prasad S, Patela H, Patela K, Selvaraj K (2013) Biosynthesis of Se nanoparticles and its effect on UV-induced DNA damage. Colloids Surf B Biointerf 103:261–266

    Article  CAS  Google Scholar 

  • Prasad S, Selvaraj K (2014) Biogenic synthesis of selenium nanoparticles and their effect on as(III)-induced toxicity on human lymphocytes. Biol Trace Elem Res 157:275–283

    Article  PubMed  CAS  Google Scholar 

  • Quintana M, Haro-Poniatowski E, Morales J, Batina N (2002) Synthesis of selenium nanoparticles by pulsed laser ablation. Appl Surf Sci 195:175–186

    Article  CAS  Google Scholar 

  • Ramamurthy C, Sampath K, Arunkumar P, Suresh Kumar M, Sujatha V, Premkumar K, Thirunavukkarasu C (2013) Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess Biosyst Eng. doi:10.1007/s00449-012-0867-1

    PubMed  Google Scholar 

  • Rezvanfar M, Rezvanfar M, Shahverdi A, Ahmadi A, Baeeri M, Mohammadirad A, Abdollahi M (2013) Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles. Toxicol Appl Pharmacol 266:356–365

    Article  PubMed  CAS  Google Scholar 

  • Ridley H, Watts C, Richardson D, Butler C (2006) Resolution of distinct membrane-bound enzymes from Enterobacter cloacae SLD1a-1 that are responsible for selective reduction of nitrate and selenate oxyanions. Appl Environ Microbiol 5173–80

  • Salunke GR, Ghosh S, Santosh Kumar RJ, Khade S, Vashisth P, Kale T, Chopade S, Pruthi V, Kundu G, Bellare JR, Chopade BA (2014) Rapid efficient synthesis and characterization of silver, gold, and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control. Int J Nanomedicine 9:2635–2653

    PubMed Central  PubMed  Google Scholar 

  • Sarkar J, Dey P, Saha S, Acharya K (2011) Mycosynthesis of selenium nanoparticles. Micro Nano Lett 6:599–602

    Article  CAS  Google Scholar 

  • Schröder I, Rech S, Krafft T, Macy J (1997) Purification and characterization of the selenate reductase from Thauera selenatis. J Biol Chem 272:23765–23768

  • Shahverdi A, Fakhimi A, Mosavat G, Fesharaki P, Rezaie S, Rezayat S (2010) Antifungal activity of biogenic selenium nanoparticles. World Appl Sci J 10:918–922

    CAS  Google Scholar 

  • Shakibaie M, Khorramizadeh M, Faramarzi M, Sabzevari O, Shahverdi A (2010) Biosynthesis and recovery of selenium nanoparticles and the effects on matrix metalloproteinase-2 expression. Biotechnol Appl Biochem 15:7–15

    Article  Google Scholar 

  • Shakibaie M, Shahverdi A, Faramarzi M, Hassanzadeh G, Rahimi H, Sabzevari O (2013) Acute and subacute toxicity of novel biogenic selenium nanoparticles in mice. Pharm Biol 51:58–63

    Article  PubMed  CAS  Google Scholar 

  • Sharma G, Sharma A, Bhavesh R, Park J, Ganbold B, Nam J, Sang-soo L (2014) Biomolecule-mediated synthesis of selenium nanoparticles using dried Vitis vinifera (raisin) extract. Molecules 19:2761–2770

    Article  PubMed  CAS  Google Scholar 

  • Shedbalkar U, Singh R, Wadhwani S, Gaidhani S, Chopade BA (2014) Microbial synthesis of gold nanoparticles: current status and future prospects. Adv Colloid Interf Sci 209:40–48

    Article  CAS  Google Scholar 

  • Shi L, Xun W, Yue W, Zhang C, Ren Y, Shi L, Wang Q, Yang R, Lei F (2011) Effect of sodium selenite, Se-yeast and nano-elemental selenium on growth performance. Small Ruminant Res 96:49–52

    Article  Google Scholar 

  • Singh R. Shedbalkar U, Wadhwani S, Chopade B.A. (2015) Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl Microbiol Biotechnol doi 10.1007/s00253-015-6622-1

  • Singh R, Wagh P, Wadhwani S, Gaidhani S, Kumbhar A, Bellare J, Chopade BA (2013) Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. Int J Nanomedicine 8:4277–4290

    PubMed Central  PubMed  Google Scholar 

  • Soflaei S, Dalimi A, Abdoli A, Kamali M, Nasiri V, Shakibaie M, Tat M (2012) Anti-leishmanial activities of selenium nanoparticles and selenium dioxide on Leishmania infantum. Comp Clin Pathol doi:10.1007/s00580-012-1561-z

  • Srivastava N, Mukhopadhyay M (2013) Biosynthesis and structural characterization of selenium nanoparticles mediated by Zooglea ramigera. Powder Technol 244:26–29

    Article  CAS  Google Scholar 

  • Swerdlow RD, Setlow P (1983) Purification and characterization of a Bacillus megaterium disulfide reductase specific for disulfides containing pantethine 4′,4″-diphosphate. J Bacteriol 153:475–484

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tam K, Ho C, Lee J, Lai M, Chang C, Rheem Y, Chen H, Hur N, Myung V (2010) Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates. Biosci Biotechnol Biochem 74:696–700

    Article  PubMed  CAS  Google Scholar 

  • Torres K, Campos V, Leon C, Rojas S, Guez-Llamazares S, Gonza’lez M, Smith C, MA M (2012) Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity. J Nanoparticle Res 14:1236

    Article  CAS  Google Scholar 

  • Vekariya KK, Kaur J, Tikoo K (2013) Alleviating anastrozole induced bone toxicity by selenium nanoparticles in SD rats. Toxicol Appl Pharm 268:212–220

  • Vetchinkina E, Loshchinina E, Kursky V, Nikitina V (2013) Reduction of organic and inorganic selenium compounds by the edible medicinal basidiomycete Lentinula edodes and the accumulation of elemental selenium nanoparticles in its mycelium. J Microbiol 51:829–835

    Article  PubMed  CAS  Google Scholar 

  • Wadhwani S, Shedbalkar U, Singh R, Karve M, Chopade B (2014) Novel polyhedral gold nanoparticles: green synthesis, optimization and characterization by environmental isolate of Acinetobacter sp.SW30. World J Microbiol Biotechnol 30:2723–2731

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Zhang J, Yu H (2007) Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radic Biol Med 42:1524–1533

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Yang L, Zhang B, Liu J (2010) Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor. Colloids Surf. B : Biointerf. 2010(80):94–102

    Article  CAS  Google Scholar 

  • Watts C, Ridley H, Condie K, Leaver J, Richardson D, Butler C (2003) Selenate reduction by Enterobacter cloacae SLD1a-1 is catalysed by a molybdenum-dependent membrane-bound enzyme that is distinct from the membrane-bound nitrate reductase. FEMS Microbiol Lett 228:273–279

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Tang Q, Zhong X, Bai Y, Chen T, Zhang Y, Li Y, Zhang X (2012) Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles. Int J Nanomedicine 7:835–844

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yazdi M, Mahdavi M, Setayesh N, Esfandyar M, Shahverdi A (2013) Selenium nanoparticle-enriched Lactobacillus brevis causes more efficient immune responses in vivo and reduces the liver metastasis in metastatic form of mouse breast cancer. DARU J Pharm Sci 21:33

    Article  CAS  Google Scholar 

  • Yazdi MZ, Mahdavi M, Varastehmoradi B, Faramarzi MA, Shahverdi AR (2012) The immunostimulatory effect of biogenic selenium nanoparticles on the 4T1 breast cancer model: an in vivo study. Biol Trace Elem Res 149:22–28

    Article  PubMed  CAS  Google Scholar 

  • Yee N, Ma J, Dalia A, Boonfueng T, Kobayashi B (2007) Se(VI) reduction and the precipitation of Se(0) by the facultative bacterium Enterobacter cloacae SLD1a-1 are regulated by FNR. Appl Environ Microbiol 73:1914–1920

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zare B, Babaie S, Setayesh N, Shahverdi A (2012) Isolation and characterization of a fungus for extracellular synthesis of small selenium nanoparticles. Nanomed J 1:14–20

    Google Scholar 

  • Zhang J, Spallholz J (2011) Toxicity of selenium compounds and nano-selenium particles. Gen Appl Syst Toxicol. doi:10.1002/9780470744307

    Google Scholar 

  • Zhang J, Zhang S, Xu J, Chen H (2004) A new method for the synthesis of selenium nanoparticles and the application to construction of H2O2 biosensor. Chin Chem Lett 15:1345–1348

    CAS  Google Scholar 

  • Zhang Y, Wang J, Zhang L (2010) Creation of highly stable selenium nanoparticles capped with hyperbranched polysaccharide in water. Langmuir 26:17617–17623

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Chen Z, Liu H, Zhang L, Gao P, Li D (2011) Biosynthesis and structural characteristics of selenium nanoparticles by Pseudomonas alcaliphila. Colloids Surf B: Biointerf 88:196–201

    Article  CAS  Google Scholar 

  • Zonaro E, Lampis S, Turner RJ, Qazi S, Vallini G (2015) Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms. Front Microbiol doi:10.3389/fmicb.2015.00584

Download references

Acknowledgments

SAW and RS acknowledge University Grants Commission (UGC), New Delhi, India, for awarding research fellowship. UUS is thankful to UGC, New Delhi, for awarding UGC-D.S. Kothari Post Doctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balu A. Chopade.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wadhwani, S.A., Shedbalkar, U.U., Singh, R. et al. Biogenic selenium nanoparticles: current status and future prospects. Appl Microbiol Biotechnol 100, 2555–2566 (2016). https://doi.org/10.1007/s00253-016-7300-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7300-7

Keywords

Navigation