Skip to main content
Log in

Pectoral and femoral fasciae: common aspects and regional specializations

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

The aim of this study was to analyse the organization of the deep fascia of the pectoral region and of the thigh. Six unembalmed cadavers (four men, two women, age range 48–93 years old) were studied by dissection and by histological (HE, van Gieson and azan-Mallory) and immunohistochemical (anti S-100) stains; morphometric studies were also performed in order to evaluate the thickness of the deep fascia in the different regions. The pectoral fascia is a thin lamina (mean thickness ± SD: 297 ± 37 μm), adherent to the pectoralis major muscle via numerous intramuscular fibrous septa that detach from its inner surface. Many muscular fibres are inserted into both sides of the septa and into the fascia. The histological study demonstrates that the pectoral fascia is formed by a single layer of undulated collagen fibres, intermixed with many elastic fibres. In the thigh, the deep fascia (fascia lata) is independent from the underlying muscle, separated by the epimysium and a layer of loose connective tissue. The fascia lata presents a mean thickness of 944 μm (±102 μm) and it is formed by bundles of collagen fibres, arranged in two to three layers. In each layer, the fibres are parallel to each other, whereas the orientation of the fibres varies from one layer to the adjacent one. The van Gieson elastic fibres stain highlights the presence of elastic fibres only in the more external layer of the fascia lata. In the thigh the epimysium is easily recognizable under the deep fascia and presents a mean thickness of 48 μm. Both the fascia lata and pectoral fascia result innerved, no specific differences in density or type of innervations is highlighted. The deep fascia of the pectoral region is morphologically and functionally different from that of the thigh: the fascia lata is a relatively autonomous structure with respect to the underlying muscular plane, while the pectoralis fascia acts as an additional insertion for the pectoralis major muscle. Different portions of the pectoralis major muscle are activated according to the glenohumeral joint movements and, consequently, selective portions of the pectoral fascia are stretched, activating specific patterns of proprioceptors. So, the pectoralis muscle has to be considered together with its fascia, and so as a myofascial unit, acting as an integrated control motor system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The Authors assumed the Anglo–Saxon classification of the fasciae of the neck. Indeed, the term “superficial fascia”, used in the French and Italian classifications, referred to the fascia covering the sternocleidomastoid and the trapezius muscles, could misunderstand with the “true” superficial fascia, that is the fibroadipose lamina enveloping the platysma muscle, and that shows completely different macro and microscopic characteristics.

References

  1. Basmajian JW (1989) Grant’s method of anatomy, 11th edn. Williams & Wilkins, Baltimore, pp 359–371

    Google Scholar 

  2. Chiarugi G (1975) Istituzioni di Anatomia dell’Uomo, vol 1. Società editrice libraria, Milano, p 146

    Google Scholar 

  3. Fairclough J, Hayashi K, Toumi H, Lyons K, Bydder G, Phillips N, Best TM, Benjamin M (2006) The functional anatomy of the iliotibial band during flexion and extension of the knee: implications for understanding iliotibial band syndrome. J Anat 208:309–316

    Article  PubMed  Google Scholar 

  4. Gerlach UJ, Lierse W (1990) Functional construction of the superficial and deep fascia system of the lower limb in man. Acta Anat 139:11–25

    Article  PubMed  CAS  Google Scholar 

  5. Graf RM, Bernardes A, Auersvald A, Damasio RC (2000) Subfascial endoscopica transaxillary augmentation mammaplasty. Aesthetic Plast Surg 24:216–220

    Article  PubMed  CAS  Google Scholar 

  6. Hwang K, Kim DJ (2005) Anatomy of pectoral fascia in relation to subfascial mammary augmentation. Ann Plast Surg 55:576–579

    Article  PubMed  CAS  Google Scholar 

  7. Jinde L, Jianlianq S, Xiaopinq C, Xiaoyan T, Jiaqinq L, Qun M, Bo L (2006) Anatomy and clinical significance of pectoral fascia. Plast Reconstr Surg 118:1557–1560

    Article  PubMed  CAS  Google Scholar 

  8. Kent GC (1978) Comparative anatomy of the vertebrates. Mosby Co., Saint Louis

    Google Scholar 

  9. Langevin HM (2006) Connective tissue: a body-wide signalling network? Med Hypotheses 66:1074–1077

    Article  PubMed  Google Scholar 

  10. Langevin HM, Sherman KJ (2007) Pathophysiological model for chronic low back pain integrating connective tissue and nervous system mechanisms. Med Hypotheses 68:74–80

    Article  PubMed  Google Scholar 

  11. Maas H, Meijer JM, Huijing PA (2005) Intermuscular interactions between synergists in rat originates from both intermuscular and extramuscular myofascial force transmission. Cells Tissues Organs 181:38–50

    Article  PubMed  Google Scholar 

  12. Meijer HJ, Baan GC, Huijing PA (2006) Myofascial force transmission is increasingly important at lower forces: firing frequency related length-force characteristics of rat extensor digitorum longus. Acta Physiol 186:185–195

    Article  CAS  Google Scholar 

  13. Myers TW (2001) Anatomy trains. Churchill Livingstone, Oxford, pp 171–194

    Google Scholar 

  14. Paoletti S (2002) Les Fascias. Rôle des tissus dans la mécanique humaine. Sully, Vannes, pp 193–199

    Google Scholar 

  15. Rijkelijkhuizen JM, Meijer HJM, Baan GC, Huijing PA (2007) Myofascial force transmission also occurs beween antagonistic muscles located within opposite compartments of the rat lower hind limb. J Electromyogr Kines 17:690–697

    Article  Google Scholar 

  16. Sato T, Hashimoto M (1984) Morphological analysis of the fascial lamination of the trunk. Bull Tokyo Med Dent Univ 31:21–32

    PubMed  CAS  Google Scholar 

  17. Standring S, Ellis H, Healy J, Johnson D, Williams A (2005) Gray’s anatomy, 39th edn. Churchill Livingstone, London, pp 817–852

    Google Scholar 

  18. Staubersand J, Li Y (1996) Zum Feinbau der Fascia cruris mit besonderer intrafaszialer nerven. Manuelle Medizin, vol 34. Springer, Heidelberg, pp 196–200

    Google Scholar 

  19. Stecco C, Porzionato A, Macchi V, Tiengo C, Parenti A, Aldegheri R, Delmas V, De Caro R (2006) Histological characteristics of the deep fascia of the upper limb. Ital J Anat Embryol 111:105–110

    PubMed  Google Scholar 

  20. Stecco C, Gagey O, Belloni A, Pozzuoli A, Porzionato A, Macchi V, Aldegheri R, De Caro R, Delmas V (2007) Anatomy of the deep fascia of the upper limb second part: study of innervation. Morphologie 91:38–43

    PubMed  CAS  Google Scholar 

  21. Stecco C, Porzionato A, Macchi V, Parenti A, Aldegheri R, Delmas V, De Caro R (2008) The expansions of the pectoral girdle muscles onto the brachial fascia: morphological aspects and spatial disposition. Cell Tissues Organ 19 (Epub ahead of print)

  22. Stecco L (1996) La Manipolazione Neuroconnettivale. Marrapese, Roma, pp 45–62

  23. Stecco L (2004) Fascial manipulation for musculoskeletal pain. Piccin, Padova, pp 123–130

    Google Scholar 

  24. Stecco L, Stecco C (2007) Manipolazione fasciale. Parte pratica. Piccin, Padova, pp 3–29

    Google Scholar 

  25. Stefanelli A (1968) Anatomia comparata: morfologia dei vertebrati. Ed. dell’Ateneo, Roma

    Google Scholar 

  26. Stilwell D (1957) Regional variations in the innervation of deep fasciae and aponeuroses. Anat Rec 23:94–104

    Google Scholar 

  27. Tebbetts JB (2004) Does fascia provide additional, meaningful coverage over a breast implant? Plast Reconstr Surg 113:777–779

    Article  PubMed  Google Scholar 

  28. Testut JL, Jacob O (1905) Précis d’anatomie topographique avec applications medico-chirurgicales, vol III. Gaston Doin et Cie, Paris, p 302

    Google Scholar 

  29. Vleeming A, Stoeckart R, Snijders CJ (1995) The posterior layer of the thoracolumbar fascia. Spine 20:753–758

    Article  PubMed  CAS  Google Scholar 

  30. Yahia H, Rhalmi S, Newman N (1992) Sensory innervation of human thoracolumbar fascia, an immunohistochemical study. Acta Orthop Scand 63:195–197

    Article  PubMed  CAS  Google Scholar 

  31. Yucesoy CA, Maas H, Koopman B, Grootenboer HJ, Huijing PA (2006) Mechanisms causing effects of muscle position on proximo-distal muscle force differences in extra-muscular myofascial force transmission. Med Eng Phys 28:214–226

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. De Caro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stecco, A., Macchi, V., Masiero, S. et al. Pectoral and femoral fasciae: common aspects and regional specializations. Surg Radiol Anat 31, 35–42 (2009). https://doi.org/10.1007/s00276-008-0395-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-008-0395-5

Keywords

Navigation