Skip to main content

Advertisement

Log in

Application of an exogenous hyperoxic contrast agent in MR mammography: initial results

  • Breast
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

There is interest in applying novel methods to dynamic MR mammography (MRM). One such possibility is to administer an exogenous hyperoxic contrast agent, such as carbogen (95–98% O2 and 2–5% CO2) or pure oxygen (100% O2). We report our first experiences with these agents in a patient with an invasive lobular carcinoma. Fourteen dynamic series were acquired with an rf-spoiled 2D multislice gradient echo sequence, including three measurements while breathing air, four measurements with 100% oxygen, three measurements with air and four measurements with carbogen. Afterwards, 0.1 mmol/kg bw of Gd-DTPA was administered to obtain dynamic T1-weighted double-echo 3D axial gradient echo images (TR/TE1/TE2/α=7.8 ms/2 ms/4.76 ms/15°) every 90 s up to 4.5 min after injection. The lesion was well delineated on the contrast-enhanced images, contrary to magnitude images reconstructed from the raw data sets acquired during air/oxygen/carbogen breathing. A ROI-based median-filtered signal-time course revealed a tumor signal increase of roughly 15% between scans acquired during air and oxygen breathing. Though preliminary, these first results are encouraging concerning the exploration of these alternative contrast agents in MRM in greater detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kaiser WA, Zeitler E (1989) MR-imaging of the breast: fast imaging sequences with and without Gd-DTPA. Radiology 170:681–686

    CAS  PubMed  Google Scholar 

  2. Heywang-Köbrunner SH, Viehweg P, Heinig A, Kuchler C (1997) Contrast-enhanced MRI of the breast: accuracy, value, controversies, solutions. Eur J Radiol 24:94–108

    Article  PubMed  Google Scholar 

  3. Van Goethem M, Schelfout K, Dijckmans L, Van der Auwera JC, Weyler J, Verslegers I, Biltjes I, De Schepper A (2004) MR mammography in the preoperative staging of breast cancer in patients with dense breast tissue: comparison with mammography and ultrasound. Eur Radiol 14:809–816

    Article  PubMed  Google Scholar 

  4. Choi BG, Kim HH, Kim EN, Kim BS, Han JY, Yoo SS, Park SH (2002) New subtraction algorithms for evaluation of lesions on dynamic contrast-enhanced MR mammography. Eur Radiol 12:3018–3022

    PubMed  Google Scholar 

  5. Wedegartner U, Bick U, Wortler K, Rummeny E, Bongartz G (2001) Differentiation between benign and malignant findings on MR-mammography: usefulness of morphological criteria. Eur Radiol 11:1645–1650

    Article  CAS  PubMed  Google Scholar 

  6. Van Goethem M, Schelfout K, Kersschot E, Colpaert C, Verslegers I, Biltjes I, Tjalma WA, Weyler J, De Schepper A (2004) Enhancing area surrounding breast carcinoma on MR mammography: comparison with pathological examination. Eur Radiol 14:1363-1370

    CAS  PubMed  Google Scholar 

  7. Baum F, Fischer U, Vosshenrich R, Grabbe E (2002) Classification of hypervascularized lesions in CE MR imaging of the breast. Eur Radiol 12:1087–1092

    Article  CAS  PubMed  Google Scholar 

  8. Mahfouz AE, Sherif H, Saad A, Taupitz M, Filimonow S, Kivelitz D, Hamm B (2001) Gadolinium-enhanced MR angiography of the breast: is the breast cancer associated with ipsilateral higher vascularity? Eur Radiol 11:965–969

    Article  CAS  PubMed  Google Scholar 

  9. Fischer DR, Baltzer P, Malich A, Wurdinger S, Freesmeyer MG, Marx C, Kaiser WA (2004) Is the “blooming sign” a promising additional tool to determine malignancy in MR mammography? Eur Radiol 14:394–401

    Article  CAS  PubMed  Google Scholar 

  10. Daldrup-Link HE, Brasch RC (2003) Macromolecular contrast agents for MR mammography: current status. Eur Radiol 13:354–365

    PubMed  Google Scholar 

  11. Robinson SP, Rijken PF, Howe FA, McSheehy PM, Van Der Sanden BP, Heerschap A, Stubbs M, Van der Kogel AJ, Griffiths JR (2003) Tumor vascular architecture and function evaluated by non-invasive susceptibility MRI methods and immunohistochemistry. J Magn Reson Imaging 17:445–454

    Article  PubMed  Google Scholar 

  12. Rijpkema M, Kaanders JH, Joosten FB, van der Kogel AJ, Heerschap A (2002) Effects of breathing a hyperoxic hypercapnic gas mixture on blood oxygenation and vascularity of head- and-neck tumors: measured by magnetic resonance imaging. Int J Radiat Oncol Biol Phys 53:1185–1191

    Article  PubMed  Google Scholar 

  13. Taylor NJ, Baddeley H, Goodchild KA, Powell ME, Thoumine M, Culver LA, Stirling JJ, Saunders MI, Hoskin PJ, Phillips H, Padhani AR, Griffiths JR (2001) BOLD MRI of human tumor oxygenation during carbogen breathing. J Magn Reson Imaging 14:156–163

    Article  CAS  PubMed  Google Scholar 

  14. Karczmar GS, River JN, Li J, Vijayakumar S, Goldman Z, Lewis MZ (1994) Effects of hyperoxia on T2* and resonance frequency weighted magnetic resonance images of rodent tumors. NMR Biomed 7:3–11

    CAS  PubMed  Google Scholar 

  15. Kuperman VYu, River JN, Lewis MZ, Lubich LM, Karczmar GS (1995) Changes in T2*-weighted images during hyperoxia differentiate tumors from normal tissue. Magn Reson Med 33:318–325

    PubMed  Google Scholar 

  16. Peller M, Weissfloch L, Stehling MK, Weber J, Bruening R, Senekow-Schmidtke R, Molls M, Reiser M (1998) Oxygen-induced MR signal changes in murine tumors. Magn Reson Imaging 16:799–809

    Article  CAS  PubMed  Google Scholar 

  17. Robinson PS, Rodrigues LM, Howe FA, Stubbs M, Griffiths JR (2001) Effects of different levels of hypercapnic hyperoxia on tumour R2* and arterial blood gas. Magn Reson Imaging 19:161–166

    Article  CAS  PubMed  Google Scholar 

  18. Al-Hallaq HA, River JN, Zamora M, Oikawa H, Karczmar GS (1998) Correlation of magnetic resonance and oxygen microelectrode measurements of carbogen-induced changes in tumor oxygenation. Int J Radiat Oncol Biol Phys 41:151–159

    Article  CAS  PubMed  Google Scholar 

  19. Robinson SP, Howe FA, Griffiths JR (1995) Noninvasive monitoring of carbogen-induced changes in tumor blood flow and oxygenation by functional magnetic resonance imaging. Int J Radiat Oncol Biol Phys 33:855–859

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothee R. Fischer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, D.R., Reichenbach, J.R., Rauscher, A. et al. Application of an exogenous hyperoxic contrast agent in MR mammography: initial results. Eur Radiol 15, 829–832 (2005). https://doi.org/10.1007/s00330-004-2484-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-004-2484-0

Keywords

Navigation