Skip to main content
Log in

Multilayered artifacts in the pre-Columbian metallurgy from the North of Peru

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Three types of alloys were recognized when analyzing pre-Columbian artifacts from the North of Peru: gold, silver, and copper alloys; gilded copper and silver; silvered copper; tumbaga, i.e., copper or silver enriched on gold at the surface by depletion gilding. In this paper, a method is described to differentiate gold alloys from gilded copper and from copper–gold tumbaga, and silver alloys from silvered copper and copper–silver tumbaga. This method is based on the use of energy-dispersive X-ray fluorescence, i.e., on a sophisticated analysis of XRF-spectra carrying out an accurate determination of Cu(K α /K β ), Ag(K α /K β ), Au(L α /L β ), and Au-L α /Cu-K α or Ag-K α /Cu-K α ratios. That implies a dedicated software for the quantitative determination of the area of X-ray peaks. This method was first checked by a relevant number of standard samples and then it was applied to pre-Columbian alloys from the North of Peru.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. In the case of gilding (gilded copper or silver) or tumbaga (Cu–Au or Ag–Au) Au-concentration is respectively sharply or continuously decreasing from the surface; in the case of tumbaga only an “equivalent” thickness can be determined, which would be the Au-thickness producing the observed effects.

References

  1. I. Shimada, Pampa Grande and the Mochica Culture (Univ. of Texas Press, Austin, 1994)

    Google Scholar 

  2. Y. Onuki, K. Inokuchi, El Tesoro del Templo de Kuntur Wasi, (Fondo Editorial del Congreso del Peru, Lima 2011)

    Google Scholar 

  3. J.C. Tello, Discovery of the Chavin culture in Peru. Am. Antiq. 9(1), 135–160 (1943)

    Article  Google Scholar 

  4. R.L. Burger, Chavin and the Origins of Andean Civilization (Thames and Hudson, New York, 1992)

    Google Scholar 

  5. R.L. Burger, Chavin de Huantar and its sphere of influence, in Handbook of South American Archeology, ed. by H. Silverman, W. Isbell (Springer, New York, 2008), pp. 681–706

    Chapter  Google Scholar 

  6. http://chavin.perucultural.org.pe/kunturwasi.html

  7. http://prehistoriapiura.tripod.com/vicus_frias.htm; Tiempos pre-hispánicos in “Breve historia de piura com/es/Cultura_Vicus”

  8. http://wiki.sumaqperu.com

  9. W. Alva, SIPAN: descrubrimiento e investigation. Quebecor World Perù S. A. (2004)

  10. W. Alva, C.B. Donnan, The Royal Tomb of Sipán, Los Angeles Fowler Museum of cultural history; University of California (1993)

  11. Sican culture in http://en.wikipedia.org/wiki/Sicanculture

  12. I. Shimada, J.A. Griffin, Precious metal objects in the Middle Sicán. Sci. Am. Mag. 270(4), 60–67 (1994)

    Google Scholar 

  13. S.K. Lothrop, Gold ornament of Chavin style. Am. Antiq. 16, 226–240 (1951)

    Article  Google Scholar 

  14. L. Vetter Parodi, Gold of Ancient Peru. Roberto Gheller Doig Ed., Lima, Peru (2006)

    Google Scholar 

  15. I. Shimada, J. Merkel, Copper-alloy metallurgy in ancient Peru. Sci. Am. 265(1), 80–86 (1991)

    Article  ADS  Google Scholar 

  16. I. Shimada, J.A. Griffin, Precious metal objects of the middle Sican. Sci. Am. 270(4), 82–89 (1994)

    Article  Google Scholar 

  17. J. Merkel, I. Shimada, C.P. Swann, R. Doonan, Pre-Hispanic copper alloy production at Batan Grande, Peru: interpretation of the analytical data for ore samples, in Archaeometry of Pre-Columbian Sites and Artefacts, ed. by D.A. Scott, P. Meyers (The Getty Conservation Institute, Santa Monica 1994), pp. 199–227

    Google Scholar 

  18. P. Carcedo, Metallurgia precolombian: manufactura y tecnicas en la orfebreria Sican, in Oro del Antiguo Perù. Coleccion Arte y Tesoros del Perù. Banco de Credito del Perù en la Cultura (1992), pp. 265–305

    Google Scholar 

  19. C.B. Donnan, Moche art of Peru. Pre-Columbian symbolic communication, Los Angeles, CA, Fowler Museum of Cultural History, University of California (1978)

  20. J. Jones, Pre-Columbian gold, in El Dorado, the Gold of Ancient Columbia, New York, Center of Inter-American Relations and the American Federation of Arts (1974), pp. 21–31

    Google Scholar 

  21. H. Lechtman, Andean value systems and the development of prehistoric metallurgy. Technol. Cult. 25, 1–36 (1984)

    Article  Google Scholar 

  22. H. Lechtman, Traditions and styles in central Andean metalworking, in The Beginning of the Use of the Metals and Alloys, ed. by R. Maddin (MIT Press, Cambridge, 1988), pp. 344–378

    Google Scholar 

  23. J. Jones, Mochica works of art in metal: a review, in Pre-Columbian Metallurgy of South America, Washington D.C.; Dumbarton Oaks Research Library and Collections, Trustees for Harvard University, ed. by E.P. Benson, (1979), pp. 53–104

    Google Scholar 

  24. H. Lechtman, The production of copper–arsenic alloys in the Central Andes: highland ores and coastal smelters? J. Field Archaeol. 18, 43–76 (1991)

    Google Scholar 

  25. P.C. Muro, I. Shimada, Behind the golden mask. Sican gold artifacts from Batan Grande, Peru, in The Art of Precolumbian Gold. The Jan Mitchel Collection, ed. by J. Jones (Weidenfeld and Nicolson, London, 1985), pp. 61–67

    Google Scholar 

  26. W. Alva, Discovering the New Word’s richest tomb. Natl. Geogr. 174(4), 510–549 (1988)

    Google Scholar 

  27. W. Alva, M. Fecht, P. Schauer, M. Tellenbach, Das Fürstengrab von Sipan, Entdeckung und Restaurierung (Verlag des Römisch-Germanischen Zentralmuseums, Mainz, 1989)

    Google Scholar 

  28. H. Lechtman, A pre-Columbian technique for electrochemical replacement gilding of gold and silver on objects of copper. J. Met. 31, 154–160 (1979)

    Google Scholar 

  29. H. Lechtman, Pre-Columbian surface metallurgy. Sci. Am. 250, 56–63 (1984)

    Article  Google Scholar 

  30. R.L. Burger, R.B. Gordon, Early central Andean metalworking from Mina Perdida, Peru. Science 282, 1108–1111 (1998)

    Article  ADS  Google Scholar 

  31. S. Schlosser et al., Fingerprints in Gold, in New Technologies for Archaeometry. Multidisciplinary Investigations in Palpa and Nasca, Peru, ed. by M. Reindel, G.A. Wagner (2007), pp. 409–436

    Google Scholar 

  32. G. Hőrz, G. And, M. Kallfass, Pre-Columbian metalworking in Peru: ornamental and ceremonial objects from the Royal Tombs of Sipán. JOM 50, 8–16 (1998)

    Article  Google Scholar 

  33. G. Hőrz, M. Kallfass, The treasure of gold and silver artefacts from the Royal Tombs of Sipán, Peru—a study on the Moche metalworking techniques. Mater. Charact. 45, 391–420 (2000)

    Article  Google Scholar 

  34. H. Lechtman, New perspectives on Moche metallurgy: techniques of gilding copper at Loma Negra, Northern Peru. Am. Antiq. 47(1), 3–30 (1998)

    Article  Google Scholar 

  35. D. Schorsch, Silver and gold Moche artefacts from Loma Negra. Metrop. Mus. J. 33, 109–136 (1998)

    Article  Google Scholar 

  36. E.A.O. Saettone et al., Plasma clearing and analysis of archeological artefacts from Sipán. J. Appl. Phys. D 36, 842–848 (2003)

    Article  ADS  Google Scholar 

  37. H. Lechtman, Pre-Columbian surface metallurgy. Sci. Am. 250, 38–45 (1984)

    Article  Google Scholar 

  38. J.L. Ruvalcaba Sil, X-Rays for Archaeology (Springer Netherlands, Heidelberg, 2001), pp. 123–149

    Google Scholar 

  39. W. Bray, Techniques of gilding and surface enrichment in pre-Hispanic American metallurgy, in Metal Plating and Platination, ed. by S. La Niece, P. Craddock (Butterworth-Heinemann, Stoneham 1993), pp. 182–192

    Google Scholar 

  40. D.A. Scott, A review of gilding techniques in ancient South America, in Gilded Metals: History, Technology and Conservation, Archetype, ed. by T. Drayman-Weisser (2000), pp. 203–222

    Google Scholar 

  41. E. Andrade et al., IBA analysis of some precolumbian gilded copper samples. Nucl. Instrum. Methods Phys. Res. B 240, 570–575 (2005)

    Article  ADS  Google Scholar 

  42. R. Cesareo et al., Pre-Columbian alloys from the royal tombs of Sipan analyzed with a portable EDXRF equipment. Appl. Radiat. Isot. 68, 525–528 (2010)

    Article  Google Scholar 

  43. S. La Niece, Depletion gilding from 3rd millennium BC. Ur. Iraq. 57, 41–47 (1995)

    Article  Google Scholar 

  44. G.M. Ingo, E. Angelini, G. Bultrini, T. De Caro, L. Pandolfi, A. Mezzi, “Contribution of surface analytical techniques for the microchemical study of archaeological artefacts. Surf. Interface Anal. 34, 328–336 (2002)

    Article  Google Scholar 

  45. R. Cesareo, A. Brunetti, A. Castellano, M.A. Rosales, Portable equipment for X-ray fluorescence analysis, in X-Ray Spectrometry: Recent Technological Advances, ed. by K. Tsuji, J. Injuk, R. Van Grieken (Wiley, New York, 2004), pp. 307–341

    Google Scholar 

  46. R. Cesareo, X-Ray Spectrometry in Encyclopedia for Industrial Chemistry (Wiley-Ullmann, New York, 2010)

    Google Scholar 

  47. AMPTEK Inc., 6 De Angelo Drive, Bedford, MA 01730-2204, USA

  48. R. Cesareo, X-Ray Physics in: La Rivista del Nuovo Cimento (Compositori, Bologna, 2000)

    Google Scholar 

  49. A. Markowicz, X-ray physics, in Handbook on X-Ray Spectrometry: Methods and Techniques, ed. by R. Van Grieken, A. Markowicz (M. Dekker, New York, 1992). Chap. 1

    Google Scholar 

  50. U. Bottigli, A. Brunetti, B. Golosio, P. Oliva, S. Stumbo, L. Vincze, P. Randaccio, P. Bleuet, A. Simionovici, A. Somogyi, Voxel-based Monte Carlo simulation of X-ray imaging and spectroscopy experiments. Spectrochim. Acta, Part B, At. Spectrosc. 59, 1747–1754 (2004)

    Article  ADS  Google Scholar 

  51. B. Ertugral et al., K β /K α X-ray intensity ratios for elements in the range 16–92 excited by 5.9, 59.5 and 123.6 keV photons. Radiat. Phys. Chem. 76, 15–22 (2007)

    Article  ADS  Google Scholar 

  52. W.T. Elam, B.D. Ravel, J.R. Sieber, A new atomic database for X-ray spectroscopic calculation. Radiat. Phys. Chem. 63, 121–128 (2002)

    Article  ADS  Google Scholar 

  53. T. Trojek, D. Wegrzynek, X-ray fluorescence K α /K β ratios for a layered specimen: comparison of measurements and Monte Carlo calculations with the MCNPX code. Nucl. Instrum. Methods Phys. Res. A 619, 311–315 (2010)

    Article  ADS  Google Scholar 

  54. R. Cesareo, A. Brunetti, Metal sheets thickness determined by EDXRF-analysis. J. X-Ray Sci. Technol. 16(2), 119–130 (2008)

    Google Scholar 

  55. R. Cesareo, M.A. Rizzutto, A. Brunetti, Metal location and thickness in a multilayer sheet by measuring K- and L-ratios. Nucl. Instrum. Methods Phys. Res. B 267(17), 2890–2896 (2009)

    Article  ADS  Google Scholar 

  56. R. Cesareo, A. Bustamante, J. Fabian, W. Alva, L. Chero, M. Espinoza, R. Rodriguez, M. Seclen, F. Gutierrez, E.B. Levano, J. Gonzales, M.A. Rizzutto, E. Poli, C. Calza, M. Dos Anjos, R.T. Lopes, G.E. Gigante, G.M. Ingo, C. Riccucci, C. Elera, I. Shimada, V. Curay, M. Castillo, F. Lopes, Evolution of pre-Columbian metallurgy from the North of Peru studied with a portable non-invasive equipment using energy-dispersive X-ray fluorescence analysis. J. Mater. Sci. Eng. B 1, 48–81 (2011)

    Google Scholar 

  57. M.J. Berger, J.H. Hubbell, XCOM: photon cross sections on a personal computer. US Dept. of Commerce, NBSIR 87-3597

  58. C. Fiorini, M. Gianoncelli, A. Longoni, F. Zaraga, Determination of the thickness of coatings by means of a new XRF spectrometer. X-Ray Spectrom. 31, 92–99 (2002)

    Article  Google Scholar 

  59. Museo Enrico Poli by: Associacion Civil Museo Enrico Poli, J. C. M. Lima, Peru, 2009

  60. www.munipiura.gob.pe

  61. www.museolarco.org

  62. Huaca Rajada; www.perutours.com/index13lacasipan.html

  63. R. Cesareo et al., EDXRF-analysis of a pre-Columbian funerary gold mask from the Museum of Sican, Peru. X-Ray Spectrom. 39, 122–126 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a bilateral project between the Consiglio Nazionale delle Ricerche and Consejo Nacional de Ciencia, Tecnologia e Innovacion Tecnologica of Perù (CNR-CONCYTEC, 2009–2011 and 2012–2014).

Dr. Stefano Ridolfi is acknowledged for providing several “Tarì” standard samples of gold alloys, and for useful discussions.

Prof. M. Rizzutto and J. Fabian express their gratitude to the International Centre for Theoretical Physics Abdus Salam, for a 5 months grant at the University of Sassari.

F. Lopes acknowledges CAPES for a 7 months grant at the University of Sassari.

Lorenzo Manetti, of the firm “Giusto Manetti”, Florence, Italy is acknowledged for providing standard gold samples.

Prof. Emma Angelini and Dr. Sabina Grassini from the Polytechnic of Turin are acknowledged for preparing samples of gilded copper with calibrated Au-thickness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Cesareo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cesareo, R., Bustamante, A.D., Fabian, J.S. et al. Multilayered artifacts in the pre-Columbian metallurgy from the North of Peru. Appl. Phys. A 113, 889–903 (2013). https://doi.org/10.1007/s00339-013-7738-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7738-8

Keywords

Navigation