Skip to main content
Log in

A structural approach in the study of bones: fossil and burnt bones at nanosize scale

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We review the different factors affecting significantly mineral structure and composition of bones. Particularly, it is assessed that micro-nanostructural and chemical properties of skeleton bones change drastically during burning; the micro- and nanostructural changes attending those phases manifest themselves, amongst others, in observable alterations to the bones colour, morphology, microstructure, mechanical strength and crystallinity. Intense changes involving the structure and chemical composition of bones also occur during the fossilization process. Bioapatite material is contaminated by an heavy fluorination process which, on a long-time scale reduces sensibly the volume of the original unit cell, mainly the a-axis of the hexagonal P63/m space group. Moreover, the bioapatite suffers to a varying degree of extent by phase contamination from the nearby environment, to the point that rarely a fluorapatite single phase may be found in fossil bones here examined. TEM images supply precise and localized information, on apatite crystal shape and dimension, and on different processes that occur during thermal processes or fossilization of ancient bone, complementary to that given by X-ray diffraction and Attenuated Total Reflection Infrared spectroscopy. We are presenting a synthesis of XRD, ATR-IR and TEM results on the nanostructure of various modern, burned and palaeontological bones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E.T. Stathopoulou, V. Psycharis, G.D. Chryssikos, Palaeogeogr. Palaeoclimatol. Palaeoecol. 266, 168–174 (2008)

    Article  Google Scholar 

  2. G. Piga, A. Santos-Cubedo, S. Moya Solà, A. Brunetti, A. Malgosa, S. Enzo, J. Archaeol. Sci. 36(9), 1857–1868 (2009)

    Article  Google Scholar 

  3. G. Piga, A. Santos-Cubedo, A. Brunetti, M. Piccinini, A. Malgosa, E. Napolitano, S. Enzo, Palaeogeogr. Palaeoclimatol. Palaeoecol. 310(1–2), 92–107 (2011)

    Article  Google Scholar 

  4. G. Piga, M. Guirguis, P. Bartoloni, A. Malgosa, S. Enzo, Int. J. Osteoarchaeol. 20, 144–157 (2010)

    Google Scholar 

  5. G. Piga, J.H. Hernández-Gasch, A. Malgosa, M.L. Ganadu, S. Enzo, Homo 61, 440–452 (2010)

    Article  Google Scholar 

  6. G. Piga, A. Brunetti, B. Lasio, L. Malfatti, À. Galobart, F.M. Dalla Vecchia, S. Enzo, Appl. Phys. A 118, 487–496 (2015)

    Article  ADS  Google Scholar 

  7. G. Piga, J. Marmi, A. Galobart, A. Brunetti, B. Lasio, L. Malfatti, S. Enzo, Spectrochim. Acta B 119, 50–64 (2016)

    Article  ADS  Google Scholar 

  8. S. Weiner, W. Traub, Faseb J. 6, 879–885 (1992)

    Google Scholar 

  9. J.-Y. Rho, L. Kuhn-Spearing, P. Ziuopos, Med. Eng. Phys. 20, 92–102 (1998)

    Article  Google Scholar 

  10. S. Weiner, H.D. Wagner, Annu. Rev. Mater. Sci. 28, 271–298 (1998)

    Article  ADS  Google Scholar 

  11. J.D. Currey, Bones: Structure and Mechanics (Princeton University Press, Princeton, 2002)

  12. X.Y. Wang, Y. Zuo, D. Huang, X.-D. Hou, Y.-B. Li, Biomed. Environ. Sci. 23, 473–480 (2010)

    Article  Google Scholar 

  13. S. Weiner, P.A. Price, Calcified Tissue Int. 39, 365–375 (1986)

    Article  Google Scholar 

  14. H.D. Wagner, S. Weiner, J. Biomech. 25, 1311–1320 (1992)

    Article  Google Scholar 

  15. M. D’Elia, G. Gianfrate, G. Quarta, L. Giotta, G. Giancane, L. Calcagnile, Radiocarbon 49, 201–210 (2007)

    Article  Google Scholar 

  16. S.E. Etok, E. Valsami-Jones, T.J. Wess, J.C. Hiller, C.A. Maxwell, K.D. Rogers, D.A.C. Manning, M.L. White, E. Lopez-Capel, M.J. Collins, M. Buckley, K.E.H. Penkman, S.L. Woodgate, J. Mater. Sci. 42, 9807–9816 (2007)

    Article  ADS  Google Scholar 

  17. L.D. Mkukuma, J.M.S. Skakle, I.R. Gibson, C.T. Imrie, R.M. Aspden, D.W.L. Hukins, Calcified Tissue Int. 75, 321–328 (2004)

    Article  Google Scholar 

  18. L. Berzina-Cimdina, N. Borodajenko, in Materials Science, Engineering and Technology, ed. by T. Theophanides. InTech. http://www.intechopen.com/books/infrared-spectroscopy-materials-science-engineering-and-technology/research-of-calcium-phosphates-using-fourier-transformation-infrared-spectroscopy. ISBN: 978-953-51-0537-4, (2012)

  19. J.C. Elliott, R.M. Wilson, S.E.P. Dowker, Adv. X Ray Anal. 45, 172–181 (2002)

    Google Scholar 

  20. G. Piga, T.J.U. Thompson, A. Malgosa, S. Enzo, J. Forensic Sci. 54, 534–539 (2009)

    Article  Google Scholar 

  21. G. Piga, G. Solinas, T.J.U. Thompson, A. Brunetti, A. Malgosa, S. Enzo, J. Archaeol. Sci. 40, 778–785 (2013)

    Article  Google Scholar 

  22. E.M. Boatman, R. Gronsky, M.B. Goodwin, R.O. Ritchie, Micros. Today 21(5), 34–40 (2013)

    Article  Google Scholar 

  23. I. Reiche, C. Vignaud, M. Menu, Solid State Sci. 2, 625–636 (2000)

    Article  ADS  Google Scholar 

  24. I. Reiche, C. Vignaud, M. Menu, Archaeometry 44(3), 447–459 (2002)

    Article  Google Scholar 

  25. M.T. Ferreira, R. Vicente, D. Navega, D. Gonçalves, F. Curate, E. Cunha, Forensic Sci. Int. 245, 202.e1–202.e5 (2014)

    Article  Google Scholar 

  26. H.M. Rietveld, Acta Crystallogr. 22, 151–152 (1967)

    Article  Google Scholar 

  27. L. Lutterotti, Nucl. Inst. Methods Phys. Res. B 268, 334–340 (2010)

    Article  ADS  Google Scholar 

  28. S. Grazulis, D. Chateigner, R.T. Downs, A.F.T. Yokochi, M. Quiro, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, A. Le Bail, J. Appl. Cryst. 42, 726–729 (2009)

    Article  Google Scholar 

  29. N.C. Popa, J. Appl. Crystallogr. 31, 176–180 (1998)

    Article  Google Scholar 

  30. S. Weiner, O. Bar Yosef, J. Archaeol. Sci. 17, 187–196 (1990)

    Article  Google Scholar 

  31. S. Weiner, P. Goldberg, O. Bar Yosef, J. Archaeol. Sci. 20, 613–628 (1993)

    Article  Google Scholar 

  32. R.E.M. Hedges, A.R. Millard, A.W.G. Pike, J. Archaeol. Sci. 22, 201–209 (1995)

    Article  Google Scholar 

  33. A. Sillen, J. Parkington, J. Archaeol. Sci. 23, 535–542 (1996)

    Article  Google Scholar 

  34. V. Michel, P. Ildefonse, G. Morin, Palaeogeogr. Palaeoclimatol. Palaeoecol. 126, 109–119 (1996)

    Article  Google Scholar 

  35. L.E. Wright, H.P. Schwarcz, J. Archaeol. Sci. 23, 933–944 (1996)

    Article  Google Scholar 

  36. K.E. Squires, T.J.U. Thompson, M. Islam, A. Chamberlain, J. Archaeol. Sci. 38, 2399–2409 (2011)

    Article  Google Scholar 

  37. G. Piga, A. Malgosa, T.J.U. Thompson, M. Guirguis, S. Enzo, Int. J. Osteoarchaeol. 25, 146–159 (2015)

    Article  Google Scholar 

  38. G. Piga, M. Guirguis, T.J.U. Thompson, A. Isidro, S. Enzo, A. Malgosa, Homo 61, 50–64 (2016)

    Article  Google Scholar 

  39. G. Ma, X.Y. Liu, Cryst. Growth Des. 9, 2991–2994 (2009)

    Article  Google Scholar 

  40. K. Sudarsanan, P.E. Mackie, R.A. Young, Mat. Res. Bull. 7, 1331–1338 (1972)

    Article  Google Scholar 

  41. K. Sudarsanan, R.A. Young, Acta Cryst. B. 34, 1401–1407 (1978)

    Article  Google Scholar 

  42. J. Elorza, H. Astibia, X. Murelaga, X. Pereda-Suberbiola, Cretac. Res. 20, 169–187 (1999)

    Article  Google Scholar 

  43. B. Perdikatsis, Mat. Sci. Forum 79, 809–814 (1991)

    Article  Google Scholar 

  44. Y. Kolodny, B. Luz, M. Sander, W.A. Clemens, Palaeogeogr. Palaeoclimatol. Palaeoecol. 126, 161–171 (1996)

    Article  Google Scholar 

  45. M.J. Kohn, T.E. Cerling, in Phosphates: Geochemical, Geobiological and Material Importance, Reviews in Mineralogy and Geochemistry, vol. 48, ed. by M.J. Kohn, J. Rakovan, J.M. Hughes (Mineralogical Society of America, Washington, 2002), pp. 455–488

    Google Scholar 

  46. S.K. Dwivedi, S. Dey, D. Swarup, Sci. Total Environ. 207, 105–109 (1997)

    Article  Google Scholar 

  47. G. Piga, D. Gonçalves, T.J.U. Thompson, A. Brunetti, A. Malgosa, S. Enzo. Int. J. Spectrosc. Article ID 4810149. doi: 10.1155/2016/4810149 (2016)

  48. G. Monge, M.I. Carretero, M. Pozo, C. Barroso, J. Archaeol. Sci. 46, 6–15 (2014)

    Article  Google Scholar 

  49. S. Pina, J.M.F. Ferreira, Materials 3, 519–535 (2010)

    Article  ADS  Google Scholar 

  50. G. Cama, B. Gharibi, J.C. Knowles, S. Romeed, L. DiSilvio, S. Deb, J. R. Soc. Interface 11, 20140727 (2014)

    Article  Google Scholar 

  51. R.M. Wilson, J.C. Elliott, S.E.P. Dowker, L.M. Rodriguez-Lorenzo, Biomaterials 26, 1317–1327 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Àngel Galobart (Institut Català de Paleontologia, Sabadell-Barcelona, Spain) for supplying the fossil osseous materials employed in this study. The authors also thank the Serveis de Microscopia, Dr. Eva Pellicer and Elisa Tolu (Universitat Autonoma de Barcelona) for their technical assistance. This work is supported by Autonomous Region of Sardinia (LR3/2008-R.Cervelli, S.Politiche), with the research project titled: “Archaeometric and physico-chemical investigation using a multi-technique approach on archaeological, anthropological and paleontological materials from the Mediterranean area and Sardinia”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giampaolo Piga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piga, G., Baró, M.D., Escobal, I.G. et al. A structural approach in the study of bones: fossil and burnt bones at nanosize scale. Appl. Phys. A 122, 1031 (2016). https://doi.org/10.1007/s00339-016-0562-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0562-1

Keywords

Navigation