Skip to main content
Log in

Characterization of Bean Seeds, Germination, and Phenolic Compounds of Seedlings by UV-C Radiation

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

We quantitatively evaluate the effects of UV-C radiation on bean seeds Oti (Phaseolus vulgaris), their germination and phenolic compounds of seedlings, by means of photoacoustic spectroscopy and scanning electron microscopy. It is shown that (i) The photoacoustic signal produced by the bean seeds exposed to UV-C radiation during 15 min, reduces from 0.24 to 0.10 mV for the wavelengths of 295 and 340 nm, as a result of their degradation. This significant reduction of 58.3% decreases, but keeps over 50% for other spectral UV wavelengths within the interval (270–400 nm). (ii) As the UV-C radiation time increases from 2 to 15 min, the morphological changes at the surface of the bean seeds exhibit micro-holes and detachment of the cotyledon sclereids. (iii) There are no significant statistical differences in the variables of germination, dry weight, and seedling length, for exposure times up to 15 min. (iv). The phenolic acids and flavonoids of the bean seedlings of seeds treated by UV-C for different exposure times (0, 2, 5, 10, and 15 min) display significant statistical differences (P ≤ 0.05) in both roots and foliage. For both the roots and foliage, the highest concentration of phenolic acids is observed at 10 and 15 min, while for root flavonoids, it appears at 5 and 15 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aboul Fotouh MM, Moawad FG, El-Naggar HA, El-Din MT, Eldeen HS (2014) Influence of seed treatment with UV-C on saline stress tolerance in green beans (Phaseolus vulgaris L.). Environ Sci 9:391–414

    Google Scholar 

  • Altieri MA (1994) Bases agroecológicas para una producción agrícola sustentable. Agricultura Técnica 54:371–386

    Google Scholar 

  • Aladjadjiyan A (2012) Physical factors for plant growth stimulation improve food quality. In: Aladjadjiyan A (ed) Food production: approaches, challenges and tasks. Rijeka, InTech, pp 145–168

    Google Scholar 

  • Aladjadjiyan A, Kakanakova A (2008) Physical methods in agro-food chain. J Cent Eur Agric 9:789–794

    Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344

    CAS  Google Scholar 

  • Araújo SDS, Paparella S, Dondi D, Bentivoglio A, Carbonera D, Balestrazzi A (2016) Physical methods for seed invigoration: advantages and challenges in seed technology. Front Plant Sci 7:646

    PubMed Central  Google Scholar 

  • Barta C, Kalai T, Hedig K, Vass I, Hedig E (2004) Differences in the ROS-generating efficacy of various ultraviolet wavelengths in detached spinach leaves. Funct Plant Biol 31:23–28. https://doi.org/10.1071/FP03170

    Article  CAS  PubMed  Google Scholar 

  • Baulcombe D, Crute I, Davies B, Dunwell J, Gale M, Jones J, Toulmin C (2009) Reaping the benefits: science and the sustainable intensification of global agriculture. The Royal Society, London

    Google Scholar 

  • Bilia AR, Salvini D, Mazzi G, Vincieri FF (2000) Characterization of calendula flower, milk-thistle fruit, and passion flower tinctures by HPLC-DAD and HPLC-MS. Chromatographia 53:210–215

    Google Scholar 

  • Bravo S, García-Alonso J, Martín-Pozuelo G, Gómez V, Santaella M, Navarro-González I, Periago MJ (2012) The influence of post-harvest UV-C hormesis on lycopene, β-carotene, and phenolic content and antioxidant activity of breaker tomatoes. Food Res Int 49:296–302

    CAS  Google Scholar 

  • Broughton WJ, Hernandez G, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.)–model food legumes. Plant Soil 252(1):55–128

    CAS  Google Scholar 

  • Cetin ES (2014) Induction of secondary metabolite production by UV-C radiation in Vitis vinifera L. Öküzgözü callus cultures. Biol Res 47:37

    PubMed  PubMed Central  Google Scholar 

  • Chávez-Mendoza C, Sánchez E (2017) Bioactive compounds from Mexican varieties of the common bean (Phaseolus vulgaris): Implications for health. Molecules 22:1360

    PubMed Central  Google Scholar 

  • Da Silva Rodrigues-Corrêa KC, Honda MD, Borthakur D, Fett-Neto AG (2019) Mimosine accumulation in Leucaena leucocephala in response to stress signaling molecules and acute UV exposure. Plant Physiol Biochem 135:432–440

    Google Scholar 

  • Dawar S, Khalid S, Tariq M (2013) Fungicidal effect of ultraviolet-C radiations in prevention of mycoflora of castor bean seeds. Arch Phytopathol Plant Prot 46:2125–2130

    CAS  Google Scholar 

  • Deckmyn G, Martens C, Impens I (1994) The importance of the ratio UV-B/photosynthetic active radiation (PAR) during leaf development as determining factor of plant sensitivity to increased UV-B irradiance: effects on growth, gas exchange and pigmentation of bean plants (Phaseolus vulgaris cv. Label). Plant Cell Environ 17:295–301

    Google Scholar 

  • Dóka O, Ajtony Z, Bicanic D, Koehorst R (2000) Assessing the extent of degradation in the UV radiation and heat-catalyzed oxidized whole milk powder: the UV photoacoustic and diffuse reflectance spectroscopies versus the peroxide value. Appl Spectrosc 54:1405–1408

    Google Scholar 

  • Edmondson JL, Davies ZG, Gaston KJ, Leake JR (2014) Urban cultivation in allotments maintains soil qualities adversely affected by conventional agriculture. J Appl Ecol 51:880–889

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ehsanpour AA, Razavizadeh R (2005) Effect of UV-C radiation on drought tolerance of alfalfa (Medicago sativa) callus. Pak J Biol Sci 8:1221–1224

    Google Scholar 

  • Elmnasser N, Guillou S, Leroi F, Orange N, Bakhrouf A, Federighi M (2007) Pulsed-light system as a novel food decontamination technology: a review. Can J Microbiol 53:813–821

    CAS  PubMed  Google Scholar 

  • Farkas J (1998) Irradiation as method for decontaminating food: a review. Int J Food Microbiol 44:189–204

    CAS  PubMed  Google Scholar 

  • FAO (2009a) High level expert forum—how to feed the world in 2050, global agriculture towards 2050. Office of the Director, Agricultural Development Economics Division Economic and Social Development Department, Viale delle Terme di Caracalla, 00153 Rome, Italy. https://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf. Accessed 2019

  • FAO (2009b) High level expert forum—how to feed the world in 2050, “The technology challenge”. Office of the Director, Agricultural Development Economics Division Economic and Social Development Department Viale delle Terme di Caracalla, 00153 Rome, Italy. https://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Technology.pdf. Accessed 2019

  • Ferreira CD, Ziegler V, Schwanz Goebel JT, Lang GH, Elias MC, de Oliveira M (2018) Quality of grain and oil of maize subjected to UV-C radiation (254 nm) for the control of weevil (Sitophilus zeamais Motschulsky). J Food Process Pres 42:e13453

    Google Scholar 

  • Forges M, Vàsquez H, Charles F, Sari DC, Urban L, Lizzi Y, Aarrouf J (2018) Impact of UV-C radiation on the sensitivity of three strawberry plant cultivars (Fragaria x ananassa) against Botrytis cinerea. Sci Hortic 240:603–613

    Google Scholar 

  • Gani A, Bashir M, Wani SM, Masoodi FA (2012) Modification of bean starch by γ-irradiation: effect on functional and morphological properties. LWT-Food Sci Technol 49:162–169

    CAS  Google Scholar 

  • Godfray HJC, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    CAS  PubMed  Google Scholar 

  • Gomez-Lopez VM, Ragaert P, Debevere J, Devlieghere F (2007) Pulsed light for food decontamination: a review. Trends Food Sci Technol 18:464–473

    CAS  Google Scholar 

  • Grela ER, Kiczorowska B, Samolińska W, Matras J, Kiczorowski P, Rybiński W, Hanczakowska E (2017) Chemical composition of leguminous seeds: part I—content of basic nutrients, amino acids, phytochemical compounds, and antioxidant activity. Eur Food Res Technol 243:1385–1395

    CAS  Google Scholar 

  • Guajardo-Flores D, Serna-Guerrero D, Serna-Saldívar SO, Jacobo-Velázquez DA (2014) Effect of germination and UV-C radiation on the accumulation of flavonoids and saponins in black bean seed coats. Cereal Chem 91:276–279

    CAS  Google Scholar 

  • Hamid N, Jawaid F (2011) Influence of seed pre-treatment by UV-A and UV-C radiation on germination and growth of Mung beans. Pak J Chem 1:164–167

    CAS  Google Scholar 

  • Hernández-Aguilar C, Aquiles CC, Artola A, Michtchenko A (2006) Laser irradiation effects on maize seed field performance. Seed Sci Technol 34:193–197

    Google Scholar 

  • Hernández-Aguilar C, Carballo AC, Michtchenko A, López-Bonilla J (2007) Pre-treatment laser light on maize seed vigor. Int E-J Eng Math Theory Appl 1:87–94

    Google Scholar 

  • Hernández-Aguilar C, Cruz-Orea A, Ivanov R, Domínguez A, Carballo A, Moreno I, Rico MR (2011). The optical absorption coefficient of maize seeds investigated by photoacoustic spectroscopy. Food Biophys 6(4):481–486

    Google Scholar 

  • Hernández-Aguilar C, Dominguez-Pacheco FA, Cruz-Orea A, Ivanov R, Carballo CA, Zepeda BR (2010) Laser in agriculture. Int Agrophys 24:407–422

    Google Scholar 

  • Hernández-Aguilar C, Domínguez-Pacheco FA, Carballo CA, Cruz OA, Ivanov R, López BJL, Valcarcel MJP (2009) Alternating magnetic field irradiation effects on three genotype maize seed field performance. Acta Agrophys 170:7–17

    Google Scholar 

  • Hernández-Aguilar C, Domínguez-Pacheco FA, Cruz-Orea A, Podleśna A, Ivanov R, Carballo CA, López-Bonilla JL (2016) Bioestimulación láser en semillas y plantas. Gayana Bot 73:132–149

    Google Scholar 

  • Hungria M, Johnston AWB, Phillips DA (1992) Effects of flavonoids released naturally from bean (Phaseolus vulgaris) on nodD-regulated gene transcription in Rhizobium leguminosarum bv Phaseoli. Mol Plant Microbe Interact 5:199–203

    CAS  PubMed  Google Scholar 

  • Hussain PR, Wani IA, Suradkar PP, Dar MA (2014) Gamma irradiation induced modification of bean polysaccharides: Impact on physicochemical, morphological and antioxidant properties. Carbohydr Polym 110:183–194

    CAS  PubMed  Google Scholar 

  • Hyun-Jung Ch, Qiang L (2010) Molecular structure and physicochemical properties of potato and bean starches as affected by gamma-irradiation. Int J Biol Macromol 47:214–222

    Google Scholar 

  • Hunt JE, McNeil DL (1998) Nitrogen status affects UV-B sensitivity of cucumber. Aust J Plant Physiol 25:79–86

    Google Scholar 

  • Irakli M, Chatzopoulou P, Ekateriniadou L (2018) Optimization of ultrasound-assisted extraction of phenolic compounds: oleuropein, phenolic acids, phenolic alcohols and flavonoids from olive leaves and evaluation of its antioxidant activities. Ind Crops Prod 124:382–388

    CAS  Google Scholar 

  • Kara Y (2013) Morphological and physiological effects of UV-C radiation on bean plant (Phaseolus vulgaris). Biosci Res 10:29–32

    Google Scholar 

  • Katerova ZI, Todorova D (2009) Endogenous polyamines lessen membrane damages in pea plants provoked by enhanced ultraviolet-C radiation. Plant Growth Regul 57:145–152

    CAS  Google Scholar 

  • Katerova Z, Todorova D, Tasheva K, Sergiev I (2012) Influence of ultraviolet radiation on plant secondary metabolite production. Genet Plant Physiol 2:113–144

    Google Scholar 

  • Lazim SK, Nasur AF (2017) The effect of magnetic field and ultraviolet-C radiation on germination and growth seedling of sorghum (Sorghum bicolor L. Moench). IOSR J Agric Vet Sci (IOSR-JAVS) 10:30–36

    Google Scholar 

  • Lin L, Harnly JM, Pastor-corrales MS, Luthria DL (2008) The polyphenolic profiles of common bean (Phaseolus vulgaris L.). Food Chem 107:399–410. https://doi.org/10.1016/j.foodchem.2007.08.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maffei ME (2014) Magnetic field effects on plant growth, development, and evolution. Front Plant Sci 5:445

    PubMed  PubMed Central  Google Scholar 

  • Mariz-Ponte N, Mendes RJ, Sario S, Melo P, Santos C (2018) Moderate UV-A supplementation benefits tomato seed and seedling invigoration: a contribution to the use of UV in seed technology. Sci Hortic 235:357–366

    Google Scholar 

  • Marinković B, Grujić M, Marinković D, Crnobarac J, Marinković J, Jaćimović G, Mircov DV (2008) Use of biophysical methods to improve yields and quality of agricultural products. J Agric Sci 53:235–242

    Google Scholar 

  • Meenashree B, Kathiravan G, Manickamoorthi N (2018) Estimation of metabolites and antioxidant activity in UV-C treated callus cultures of Bacopa monnieri (Linn.) Pennell. SCIOL Biotechnol 1:9–14

    Google Scholar 

  • Meneses-Reyes JC, Soto-Hernández RM, Espinosa-Solares T, Ramírez-Guzmán ME (2008) Optimización del proceso de extracción de flavonoides de flor de manzanilla (Matricaria recutita L.). Agrociencia 42:425–433

    Google Scholar 

  • Mukhopadhyay S, Ramaswamy R (2012) Application of emerging technologies to control Salmonella in foods: a review. Food Res Int 45:666–677

    CAS  Google Scholar 

  • Neelamegam R, Sutha T (2015) UV-C irradiation effect on seed germination, seedling growth and productivity of groundnut (Arachis hypogaea L.). Int J Curr Microbiol App Sci 4:430–443

    CAS  Google Scholar 

  • Occhipinti A, De Santis A, Maffei ME (2014) Magnetoreception: an unavoidable step for plant evolution? Trends Plant Sci 19:1–4

    CAS  PubMed  Google Scholar 

  • Peykarestan B, Seify M (2012) UV irradiation effects on seed germination and growth, protein content, peroxidase and protease activity in redbean. IRJABS 3:92–102

    CAS  Google Scholar 

  • Poulet P, Chambron J, Unterreiner R (1980) Quantitative photoacoustic spectroscopy applied to thermally thick samples. J Appl Phys 51(3):1738–1742

    CAS  Google Scholar 

  • Reynoso Camacho R, Ríos Ugalde MDC, Torres Pacheco I, Acosta Gallegos JA, Palomino Salinas AC, Ramos Gómez M, Guzmán Maldonado SH (2007) El consumo de frijol común (Phaseolus vulgaris L.) y su efecto sobre el cáncer de colon en ratas Sprague-Dawley. Agricultura Técnica en México 33:43–52

    Google Scholar 

  • Rifna EJ, Ramanan KR, Mahendran R (2019) Emerging technology applications for improving seed germination. Trends Food Sci Technol. https://doi.org/10.1016/j.tifs.2019.02.029

    Article  Google Scholar 

  • Rodriguez Páez CL, Reyes MCP, Aguilar CH, Pacheco FAD, Martínez EM, Orea AC, Bonilla JLL (2011) Control of natural mycobiota in maize grains by ultraviolet (UVC) irradiation. Acta Agrophys 18:193

    Google Scholar 

  • Rupiasih NN, Vidyasagar PB (2016). Effect of UV-C radiation and hypergravity on germination, growth and content of chlorophyll of wheat seedlings. In: AIP conference proceedings 1719:030035. AIP Publishing.

  • Sánchez-Hernandez G, Hernandez-Aguilar C, Domínguez-Pacheco A, Cruz-Orea A, Pérez-Reyes MCJ, Martínez EM (2015) The optical absorption coefficient of bean seeds investigated using photoacoustic spectroscopy. Int J Thermophys 36(5–6):835–843

    Google Scholar 

  • Santos AL, Oliveira V, Baptista I, Henriques I, Gomes NC, Almeida A, Cunha  (2013) Wavelength dependence of biological damage induced by UV radiation on bacteria. Arch Microbiol 195:63–74

    CAS  PubMed  Google Scholar 

  • Shetta DN, Areaf MI (2009) Impact of ultraviolet-C radiation on seed germination and chlorophyll concentration of some woody trees grown in Saudi Arabia. J Agric Environ Sci 8:1–21

    Google Scholar 

  • Shetty P, Atallah MT, Shetty K (2002) Effects of UV treatment on the proline-linked pentose phosphate pathway for phenolics and L-DOPA synthesis in dark germinated Vicia faba. Process Biochem 37:1285–1295

    CAS  Google Scholar 

  • Siddiqui A, Dawar Shahna Z, Zaki MJ, Hamid N (2011) Role of ultra violet (UV-C) radiation in the control of root infecting fungi on groundnut and mung bean. Pak J Bot 43:2221–2224

    Google Scholar 

  • Singh J, Kaur L, Singh H (2013) Food Microstructure and starch digestión. In: J Henry (ed) Avances in food and nutrition research. Academic Press, Burlington 70:137–179.

  • Solecka D (1997) Role of phenylpropanoid compounds in plant responses to different stress factors. Acta Physiol Plant 19:257–268

    CAS  Google Scholar 

  • Stapleton AE (1992) Ultraviolet radiation and plants: burning questions. Plant Cell 4:1353–1358

    PubMed  PubMed Central  Google Scholar 

  • Strack D (1997) Phenolic metabolism. In: Dey PM, Harbourne JB (eds) Plant biochemistry. Academic Press, San Diego, pp 387–416

    Google Scholar 

  • Sukthavornthum W, Bodhipadma K, Noichinda S, Phanomchai S, Deelueak U, Kachonpadungkitti Y, Leung DW (2018) UV-C irradiation induced alterations in shoot proliferation and in vitro flowering in plantlets developed from encapsulated and non-encapsulated microshoots of Persian violet. Sci Hort 233:9–13

    CAS  Google Scholar 

  • Thomas Dhanya TT, Puthur JT (2017) UV radiation priming: a means of amplifying the inherent potential for abiotic stress tolerance in crop plants. Environ Exp Bot 138:57–66

    Google Scholar 

  • Torres CMT (2001) Estudio químico y anatómico de dos variedades de frijol (Phaseolus vulgaris L.) cambios postcosecha. Tesis Doctoral, Universidad Autónoma de Nuevo León, Nuevo León, México

  • Torres M, Frutos G, Duran JM (1991) Sunflower seed deterioration from exposure to UV-C radiation. Environ Exp Bot 31:201–207

    Google Scholar 

  • Urban L, Charles F, de Miranda MRA, Aarrouf J (2016) Understanding the physiological effects of UV-C light and exploiting its agronomic potential before and after harvest. Plant Physiol Biochem 105:1–11

    CAS  PubMed  Google Scholar 

  • Vasilevski G (2003) Perspectives of the application of biophysical methods in sustainable agriculture. Bulg J Plant Physiol 29:179–186

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Estrada for providing the bean seed and Ing. Esther Ayala for the technical assistance at the Cinvestav Photothermal Techniques Laboratories and M. Sofía González Gallardo for her technical assistance (UNAM). Claudia Hernandez thanks the support for SIP research projects and to all collaborators.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Hernandez-Aguilar.

Ethics declarations

Conflict of interest

There is no conflict of interest in relation to the article presented. Taking into consideration that the author and the coauthors of the article mention that an original article is presented, not published and does not infringe any legal copyright, or any property right or any other right whatsoever.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernandez-Aguilar, C., Dominguez-Pacheco, A., Tenango, M.P. et al. Characterization of Bean Seeds, Germination, and Phenolic Compounds of Seedlings by UV-C Radiation. J Plant Growth Regul 40, 642–655 (2021). https://doi.org/10.1007/s00344-020-10125-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-020-10125-0

Keywords

Navigation