Skip to main content
Log in

Phylogenetic, ontogenetic and adult adaptive plasticity of rhythmic neural networks: a common neuromodulatory mechanism?

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Neuromodulatory inputs are known to play a major role in the adaptive plasticity of rhythmic neural networks in adult animals. Using the crustacean stomatogastric nervous system, we have investigated the role of modulatory inputs in the development of rhythmic neural networks. We found that the same neuronal population is organised into a single network in the embryo, as opposed to the two networks present in the adult. However, these adult networks pre-exist in the embryo and can be unmasked by specific alterations of the neuromodulatory environment. Similarly, adult networks may switch back to the embryonic phenotype by manipulating neuromodulatory inputs. During development, we found that the early established neuromodulatory population display alteration in expressed neurotransmitter phenotypes, and that although the population of modulatory neurones is established early, with morphology and projection pattern similar to adult ones, their neurotransmitter phenotype may appear gradually. Therefore the abrupt switch from embryonic to adult network expression occurring at metamorphosis may be due to network reconfiguration in response to changes in modulatory input, as found in adult adaptive plasticity. Strikingly, related crustacean species express different motor outputs using the same basic network circuitry, due to species-specific alteration in neuromodulatory substances within homologous projecting neurones. Therefore we propose that alterations within neuromodulatory systems to a given rhythmic neural network displaying the same basic circuitry may account for the generation of different motor outputs throughout development (ontogenetic plasticity), adulthood (adaptive plasticity) and evolution (phylogenetic plasticity).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–d
Fig. 2a–e
Fig. 3a–c
Fig. 4a–c
Fig. 5a–d
Fig. 6a, b
Fig. 7

Similar content being viewed by others

Abbreviations

CoG:

Commissural ganglion

OG:

Oesophageal ganglion

STG:

Stomatogastric ganglion

STNS:

Stomatogastric nervous system

References

  • Beltz BS, Helluy SM, Ruchhoeft ML, Gammill LS (1992) Aspects of the embryology and neural development of the American lobster. J Exp Zool 261:288–297

    CAS  PubMed  Google Scholar 

  • Bem T, Cabelguen JM, Ekeberg O, Grillner S (2003) From swimming to walking: a single basic network for two different behaviors. Biol Cybern 88:79–90

    Article  PubMed  Google Scholar 

  • Blitz DM, Nusbaum MP (1999) Distinct functions for cotransmitters mediating motor pattern selection. J Neurosci 19:6774–6783

    CAS  PubMed  Google Scholar 

  • Blitz DM, Christie AE, Marder E, Nusbaum MP (1995) Distribution and effects of tachykinin-like peptides in the stomatogastric nervous system of the crab, Cancer borealis. J Comp Neurol 354:282–294

    CAS  PubMed  Google Scholar 

  • Blitz DM, Christie AE, Coleman MJ, Norris BJ, Marder E, Nusbaum MP (1999) Different proctolin neurons elicit distinct motor patterns from a multifunctional neuronal network. J Neurosci 19:5449–5463

    CAS  PubMed  Google Scholar 

  • Bou-Flores C, Hilaire G (2000) 5-Hydroxytryptamine(2A) and 5-hydroxytryptamine(1B) receptors are differently affected by the monoamine oxidase A deficiency in the Tg8 transgenic mouse. Neurosci Lett 296:141–144

    Article  CAS  PubMed  Google Scholar 

  • Branchereau P, Morin D, Bonnot A, Ballion B, Chapron J, Viala D (2000) Development of lumbar rhythmic networks: from embryonic to neonate locomotor-like patterns in the mouse. Brain Res Bull 53:711–718

    Article  CAS  PubMed  Google Scholar 

  • Branchereau P, Chapron J, Meyrand P (2002) Descending 5-hydroxytryptamine raphe inputs repress the expression of serotonergic neurons and slow the maturation of inhibitory systems in mouse embryonic spinal cord. J Neurosci 22:2598–2606

    CAS  PubMed  Google Scholar 

  • Bumpus HC (1891) The embryology of the American lobster. J Morphol 5:215–262

    Google Scholar 

  • Calabrese RL (1979) The roles of endogenous membrane properties and synaptic interaction in generating the heartbeat rhythm of the leech, Hirudo medicinalis. J Exp Biol 82:163–176

    CAS  PubMed  Google Scholar 

  • Calabrese RL, Arbas EA (1985) Modulation of central and peripheral rhythmicity in the heartbeat system of the leech. In: Selverston AI (ed) Model neural networks and behaviour. Plenum Press, New York

  • Casasnovas B, Meyrand P (1995) Functional differentiation of adult neural circuits from a single embryonic network. J Neurosci 15:5703–5718

    CAS  PubMed  Google Scholar 

  • Cazalets JR, Nagy F, Moulins M (1990) Suppressive control of the crustacean pyloric network by a pair of identified interneurons. I. Modulation of the motor pattern. J Neurosci 10:448–457

    CAS  PubMed  Google Scholar 

  • Cazalets JR, Sqalli-Houssaini Y, Clarac F (1992) Activation of the central pattern generators for locomotion by serotonin and excitatory amino acids in neonatal rat. J Physiol (Lond) 455:187–204

    Google Scholar 

  • Cazalets JR, Gardette M, Hilaire G (2000) Locomotor network maturation is transiently delayed in the MAOA-deficient mouse. J Neurophysiol 83:2468–2470

    CAS  PubMed  Google Scholar 

  • Charmantier G, Aiken DE (1987) Intermediate larval and postlarval stages of Homarus americanus H. Milne Edwards, 1837 (Crustacea, Decapodia). J Crustacean Biol 11:481–495

    Google Scholar 

  • Charmantier G, Charmantier-Daures M, Aiken DE (1991) Metamorphosis in the lobster Homarus (DECAPODIA): a review. J Crustacean Biol 11:481–495

    Google Scholar 

  • Christie AE, Skiebe P, Marder E (1995) Matrix of neuromodulators in neurosecretory structures of the crab Cancer borealis. J Exp Biol 198:2431–2439

    CAS  PubMed  Google Scholar 

  • Claiborne BJ, Selverston AI (1984a) Localization of stomatogastric IV neuron cell bodies in lobster brain. J Comp Physiol A 154:27–32

    Google Scholar 

  • Claiborne BJ, Selverston AI (1984b) Histamine as a neurotransmitter in the stomatogastric nervous system of the spiny lobster. J Neurosci 4:708–721

    CAS  PubMed  Google Scholar 

  • Clemens S, Combes D, Meyrand P, Simmers J (1998) Long-term expression of two interacting motor pattern-generating networks in the stomatogastric system of freely behaving lobster. J Neurophysiol 79:1396–1408

    CAS  PubMed  Google Scholar 

  • Combes D, Meyrand P, Simmers J (1999a) Motor pattern specification by dual descending pathways to a lobster rhythm-generating network. J Neurosci 19:3610–3619

    CAS  PubMed  Google Scholar 

  • Combes D, Meyrand P, Simmers J (1999b) Dynamic restructuring of a rhythmic motor program by a single mechanoreceptor neuron in lobster. J Neurosci 19:3620–3628

    CAS  PubMed  Google Scholar 

  • Cournil I, Casasnovas B, Helluy SM, Beltz BS (1995) Dopamine in the lobster Homarus gammarus: II. Dopamine-immunoreactive neurons and development of the nervous system. J Comp Neurol 362:1–16

    CAS  PubMed  Google Scholar 

  • Delcomyn F (1980) Neural basis of rhythmic behavior in animals. Science 210:492–498

    CAS  PubMed  Google Scholar 

  • Dickinson PS, Hauptman J, Hetling J, Mahadevan A (2001) RCPH modulation of a multi-oscillator network: effects on the pyloric network of the spiny lobster. J Neurophysiol 85:1424–1435

    CAS  PubMed  Google Scholar 

  • Fenelon VS, Casasnovas B, Faumont S, Meyrand P (1998) Ontogenetic alteration in peptidergic expression within a stable neuronal population in lobster stomatogastric nervous system. J Comp Neurol 399:289–305

    Article  CAS  PubMed  Google Scholar 

  • Fenelon VS, Kilman V, Meyrand P, Marder E (1999) Sequential developmental acquisition of neuromodulatory inputs to a central pattern-generating network. J Comp Neurol 408:335–351

    Article  CAS  PubMed  Google Scholar 

  • Fortin G, del Toro ED, Abadie V, Guimaraes L, Foutz AS, Denavit-Saubie M, Rouyer F, Champagnat J (2000) Genetic and developmental models for the neural control of breathing in vertebrates. Respir Physiol 122:247–257

    Article  CAS  PubMed  Google Scholar 

  • Fourtner CR (1976) Central nervous control of cockroach walking. In: Herman RM, Grillner S, Stein PSG, Stuart DG (eds) Neural control of locomotion. Plenum Press, New York

  • Getting PA, Lennard PR, Hume RI (1980) Central pattern generator mediating swimming in Tritonia. I. Identification and synaptic interactions. J Neurophysiol 44:151–164

    CAS  PubMed  Google Scholar 

  • Gray PA, Rekling JC, Bocchiaro CM, Feldman JL (1999) Modulation of respiratory frequency by peptidergic input to rhythmogenic neurons in the preBotzinger complex. Science 286:1566–1568

    Article  CAS  PubMed  Google Scholar 

  • Hanson MG, Landmesser LT (2003) Characterization of the circuits that generate spontaneous episodes of activity in the early embryonic mouse spinal cord. J Neurosci 23:587–600

    CAS  PubMed  Google Scholar 

  • Harris-Warrick RM, Marder E (1991) Modulation of neural networks for behavior. Annu Rev Neurosci 14:39–57

    Article  CAS  PubMed  Google Scholar 

  • Harris-Warrick RM, Nagy F, Nusbaum MP (1992) Neuromodulation of stomatogastric networks by identified neurons and transmitters. In: Harris-Warrick RM, Marder E, Selverston AI Moulins M (eds) Dynamic biological networks the stomatogatric nervous system. MIT Press, Boston, pp 87–137

  • Hartenstein V (1997) Development of the insect stomatogastric nervous system. Trends Neurosci 20:421–427

    Article  CAS  PubMed  Google Scholar 

  • Heiligenberg W, Metzner W, Wong CJ, Keller CH (1996) Motor control of the jamming avoidance response of Apteronotus leptorhynchus: evolutionary changes of a behavior and its neuronal substrates. J Comp Physiol A 179:653–674

    CAS  PubMed  Google Scholar 

  • Helluy SM, Beltz BS (1991) Embryonic development of the american lobster (Homarus americanus): quantitative staging and characterization of an embryonic molt cycle. Biol Bull 180:355–371

    Google Scholar 

  • Herrick FH (1895) The American lobster; a study of its habits and development. Bull US Fish Comm 15:1–252

    Google Scholar 

  • Jing J, Gillette R (1999) Central pattern generator for escape swimming in the notaspid sea slug Pleurobranchaea californica. J Neurophysiol 81:654–667

    CAS  PubMed  Google Scholar 

  • Juranek J, Metzner W (1998) Segregation of behavior-specific synaptic inputs to a vertebrate neuronal oscillator. J Neurosci 18:9010–9019

    CAS  PubMed  Google Scholar 

  • Katz PS, Harris-Warrick RM (1999) The evolution of neuronal circuits underlying species-specific behavior. Curr Opin Neurobiol 9:628–633

    Article  CAS  PubMed  Google Scholar 

  • Katz PS, Tazaki K (1992) Comparative and evolutionary aspects of the crustacean stomatogastric system. In: Harris-Warrick RM, Marder E, Selverston AI, Moulins M (eds). Dynamic biological networks the stomatogatric nervous system. MIT Press, Boston, pp 221–261

  • Kiehn O, Butt SJ (2003) Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord. Prog Neurobiol 70:347–361

    Article  CAS  PubMed  Google Scholar 

  • Kilman VS (1998) Multiple roles of neuromodulators throughout life: an anatomical study of the crustacean stomatogastric nervous system. PhD Thesis, Brandeis University

    Google Scholar 

  • Kilman V, Fenelon VS, Richards KS, Thirumalai V, Meyrand P, Marder E (1999) Sequential developmental acquisition of cotransmitters in identified sensory neurons of the stomatogastric nervous system of the lobsters, Homarus americanus and Homarus gammarus. J Comp Neurol 408:318–334

    Article  CAS  PubMed  Google Scholar 

  • Lamb T, Yang JF (2000) Could different directions of infant stepping be controlled by the same locomotor central pattern generator? J Neurophysiol 83:2814–2824

    CAS  PubMed  Google Scholar 

  • Le Feuvre Y, Fenelon VS, Meyrand P (1999) Central inputs mask multiple adult neural networks within a single embryonic network. Nature 402:660–664

    Article  PubMed  Google Scholar 

  • Le Feuvre Y, Fenelon VS, Meyrand P (2001) Ontogeny of modulatory inputs to motor networks: early established projection and progressive neurotransmitter acquisition. J Neurosci 21:1313–1326

    PubMed  Google Scholar 

  • Li L, Pulver SR, Kelley WP, Thirumalai V, Sweedler JV, Marder E (2002) Orcokinin peptides in developing and adult crustacean stomatogastric nervous systems and pericardial organs. J Comp Neurol 444:227–244

    Article  CAS  PubMed  Google Scholar 

  • Lieske SP, Thoby-Brisson M, Telgkamp P, Ramirez JM (2000) Reconfiguration of the neural network controlling multiple breathing patterns: eupnea, sighs and gasps. Nat Neurosci 3:600–607

    Article  CAS  PubMed  Google Scholar 

  • Marder E, Calabrese RL (1996) Principles of rhythmic motor pattern generation. Physiol Rev 76:687–717

    CAS  PubMed  Google Scholar 

  • Marder E, Richards KS (1999) Development of the peptidergic modulation of a rhythmic pattern generating network. Brain Res 848:35–44

    Article  CAS  PubMed  Google Scholar 

  • Marder E, Christie AE, Kilman VL (1995) Functional organization of cotransmission systems: lessons from small nervous systems. Invert Neurosci 1:105–112

    CAS  PubMed  Google Scholar 

  • McLean DL, Sillar KT (2003) Spinal and supraspinal functions of noradrenaline in the frog embryo: consequences for motor behaviour. J Physiol (Lond) 551:575–587

    Article  CAS  PubMed  Google Scholar 

  • McLean DL, Merrywest SD, Sillar KT (2000) The development of neuromodulatory systems and the maturation of motor patterns in amphibian tadpoles. Brain Res Bull 53:595–603

    Article  CAS  PubMed  Google Scholar 

  • Meyrand P, Moulins M (1988a) Phylogenetic plasticity of crustacean stomatogastric circuits. I. Pyloric patterns and pyloric circuit of the shrimp Palaemon serratus. J Exp Biol 138:107–132

    Google Scholar 

  • Meyrand P, Moulins M (1988b) Phylogenetic plasticity of crustacean stomatogastric circuits II. Extrinsic inputs to the pyloric circuit of the shrimp Palaemon serratus. J Exp Biol 138:133–153

    Google Scholar 

  • Meyrand P, Simmers J, Moulins M (1991) Construction of a pattern-generating circuit with neurons of different networks. Nature 351:60–63

    Article  CAS  PubMed  Google Scholar 

  • Meyrand P, Simmers J, Moulins M (1994) Dynamic construction of a neural network from multiple pattern generators in the lobster stomatogastric nervous system. J Neurosci 14:630–644

    CAS  PubMed  Google Scholar 

  • Meyrand P, Faumont S, Simmers J, Christie AE, Nusbaum MP (2000) Species-specific modulation of pattern-generating circuits. Eur J Neurosci 12:2585–2596

    Article  CAS  PubMed  Google Scholar 

  • Moulins M, Cournil I (1982) All-or-none control of the bursting properties of the pacemaker neurons of the lobster pyloric pattern generator. J Neurobiol 13:447–458

    CAS  PubMed  Google Scholar 

  • Nagy F, Cardi P (1994) A rhythmic modulatory gating system in the stomatogastric nervous system of Homarus gammarus. II. Modulatory control of the pyloric CPG. J Neurophysiol 71:2490–2502

    CAS  PubMed  Google Scholar 

  • Nakayama K, Nishimaru H, Iizuka M, Ozaki S, Kudo N (1999) Rostrocaudal progression in the development of periodic spontaneous activity in fetal rat spinal motor circuits in vitro. J Neurophysiol 81:2592–2595

    CAS  PubMed  Google Scholar 

  • Nakayama K, Nishimaru H, Kudo N (2002) Basis of changes in left-right coordination of rhythmic motor activity during development in the rat spinal cord. J Neurosci 22:10388–10398

    CAS  PubMed  Google Scholar 

  • Norris BJ, Coleman MJ, Nusbaum MP (1996) Pyloric motor pattern modification by a newly identified projection neuron in the crab stomatogastric nervous system. J Neurophysiol 75:97–108

    CAS  PubMed  Google Scholar 

  • Nusbaum MP (2002) Regulating peptidergic modulation of rhythmically active neural circuits. Brain Behav Evol 60:378–387

    Article  PubMed  Google Scholar 

  • Nusbaum MP, Blitz DM, Swensen AM, Wood D, Marder E (2001) The roles of co-transmission in neural network modulation. Trends Neurosci 24:146–154

    Article  CAS  PubMed  Google Scholar 

  • Okado N, Matsukawa M, Noritake S, Ozaki S, Hamada S, Arita M, Kudo N (1991) Species differences in the distribution and coexistence ratio of serotonin and substance P in the monkey, cat, rat and chick spinal cord. Neurosci Lett 132:155–158

    Article  CAS  PubMed  Google Scholar 

  • Onimaru H, Homma I (2002) Development of the rat respiratory neuron network during the late fetal period. Neurosci Res 42:209–218

    Article  CAS  PubMed  Google Scholar 

  • Oppenheim RW (1991) Cell death during development of the nervous system. Annu Rev Neurosci 14:453–501

    Article  CAS  PubMed  Google Scholar 

  • Ozaki S, Yamada T, Iizuka M, Nishimaru H, Kudo N (1996) Development of locomotor activity induced by NMDA receptor activation in the lumbar spinal cord of the rat fetus studied in vitro. Brain Res Dev Brain Res 97:118–125

    Article  CAS  PubMed  Google Scholar 

  • Pagliardini S, Ren J, Greer JJ (2003) Ontogeny of the pre-Botzinger complex in perinatal rats. J Neurosci 23:9575–9584

    CAS  PubMed  Google Scholar 

  • Perrins R, Soffe SR (1996) Composition of the excitatory drive during swimming in two amphibian embryos: Rana and Bufo. J Comp Physiol A 179:563–573

    CAS  PubMed  Google Scholar 

  • Pulver SR, Thirumalai V, Richards KS, Marder E (2003) Dopamine and histamine in the developing stomatogastric system of the lobster Homarus americanus. J Comp Neurol 462:400–414

    Article  CAS  PubMed  Google Scholar 

  • Ren J, Greer JJ (2003) Ontogeny of rhythmic motor patterns generated in the embryonic rat spinal cord. J Neurophysiol 89:1187–1195

    PubMed  Google Scholar 

  • Rezer I, Moulins M (1983) Expression of the crustacean pyloric pattern generator in the intact animal. J Comp Physiol A 153:17–28

    Google Scholar 

  • Richards KS, Marder E (2000) The actions of crustacean cardioactive peptide on adult and developing stomatogastric ganglion motor patterns. J Neurobiol 44:31–44

    Article  CAS  PubMed  Google Scholar 

  • Richards KS, Simon DJ, Pulver SR, Beltz BS, Marder E (2003) Serotonin in the developing stomatogastric system of the lobster, Homarus americanus. J Neurobiol 54:380–392

    Article  CAS  PubMed  Google Scholar 

  • Robertson RM, Moulins M (1981) Oscillatory command input to the motor pattern generators of the crustacean stomatogastric ganglion I. the pyloric rhythm. J Comp Physiol A 143:453–463

    Google Scholar 

  • Scrymgeour-Wedderburn JF, Reith CA, Sillar KT (1997) Voltage oscillations in Xenopus spinal cord neurons: developmental onset and dependence on co-activation of NMDA and 5HT receptors. Eur J Neurosci 9:1473–1482

    CAS  PubMed  Google Scholar 

  • Selverston AI, Mulloney B (1974) Organization of the stomatogastric ganglion of spiny lobster. II Neurons driving the median tooth. J Comp Physiol A 91:33–51

    Google Scholar 

  • Sharp AA, Ma E, Bekoff A (1999) Developmental changes in leg coordination of the chick at embryonic days 9, 11, and 13: uncoupling of ankle movements. J Neurophysiol 82:2406–2414

    CAS  PubMed  Google Scholar 

  • Sillar KT, Woolston AM, Wedderburn JF (1995) Involvement of brainstem serotonergic interneurons in the development of a vertebrate spinal locomotor circuit. Proc R Soc London Ser B 259:65–70

    CAS  PubMed  Google Scholar 

  • Sillar KT, McLean DL, Fischer H, Merrywest SD (2002) Fast inhibitory synapses: targets for neuromodulation and development of vertebrate motor behaviour. Brain Res Brain Res Rev 40:130–140

    Article  CAS  PubMed  Google Scholar 

  • Skiebe P (1999) Allatostatin-like immunoreactivity in the stomatogastric nervous system and the pericardial organs of the crab Cancer pagurus, the lobster Homarus americanus, and the crayfish Cherax destructor and Procambarus clarkii. J Comp Neurol 403:85–105

    Article  CAS  PubMed  Google Scholar 

  • Skiebe P (2001) Neuropeptides are ubiquitous chemical mediators: Using the stomatogastric nervous system as a model system. J Exp Biol 204:2035–2048

    CAS  PubMed  Google Scholar 

  • Spitzer NC (1994) Development of voltage-dependent and ligand-gated channels in excitable membranes. Prog Brain Res 102:169–179

    CAS  PubMed  Google Scholar 

  • Spitzer NC, Vincent A, Lautermilch NJ (2000) Differentiation of electrical excitability in motoneurons. Brain Res Bull 53:547–552

    Article  CAS  PubMed  Google Scholar 

  • Spitzer NC, Kingston PA, Manning TJ, Conklin MW (2002) Outside and in: development of neuronal excitability. Curr Opin Neurobiol 12:315–323

    Article  CAS  PubMed  Google Scholar 

  • Sullivan JS, Faumont S, Le Feuvre Y, Simmers J, Fénelon VS, Meyrand P (2002) Expression of embryonic-like motor patterns in an adult system: a role for histaminergic transmission. Soc Neurosci Abstr 28

  • Tazaki K, Tazaki Y (1997) Neural control of the pyloric region in the foregut of the shrimp Penaeus (Decapoda: Penaeidae). J Comp Physiol A 181:367–382

    Article  Google Scholar 

  • Tazaki K, Tazaki Y (2000) Multiple motor patterns in the stomatogastric ganglion of the shrimp Penaeus japonicus. J Comp Physiol A 186:105–118

    Article  CAS  PubMed  Google Scholar 

  • ten Donkelaar HJ (2000) Major events in the development of the forebrain. Eur J Morphol 38:301–308

    PubMed  Google Scholar 

  • Thirumalai V, Marder E (2002) Colocalized neuropeptides activate a central pattern generator by acting on different circuit targets. J Neurosci 22:1874–1882

    CAS  PubMed  Google Scholar 

  • Tierney AJ, Blanck J, Mercier J (1997) FMRFamide-like peptides in the crayfish (Procambarus clarkii) stomatogastric nervous system: distribution and effects on the pyloric motor pattern. J Exp Biol 200:3221–3233

    CAS  PubMed  Google Scholar 

  • Tierney AJ, Godleski MS, Rattananont P (1999) Serotonin-like immunoreactivity in the stomatogastric nervous systems of crayfishes from four genera. Cell Tissue Res 295:537–551

    Article  CAS  PubMed  Google Scholar 

  • Turrigiano GG, Selverston AI (1991) Distribution of cholecystokinin-like immunoreactivity within the stomatogastric nervous systems of four species of decapod crustacea. J Comp Neurol 305:164–176

    CAS  PubMed  Google Scholar 

  • Viemari JC, Burnet H, Bevengut M, Hilaire G (2003) Perinatal maturation of the mouse respiratory rhythm-generator: in vivo and in vitro studies. Eur J Neurosci 17:1233–1244

    PubMed  Google Scholar 

  • Vinay L, Brocard F, Clarac F, Norreel JC, Pearlstein E, Pflieger JF (2002) Development of posture and locomotion: an interplay of endogenously generated activities and neurotrophic actions by descending pathways. Brain Res Brain Res Rev 40:118–129

    Article  PubMed  Google Scholar 

  • Wainwright PC (2002) The evolution of feeding motor patterns in vertebrates. Curr Opin Neurobiol 12:691–695

    Article  CAS  PubMed  Google Scholar 

  • Whelan PJ (2003) Developmental aspects of spinal locomotor function: insights from using the in vitro mouse spinal cord preparation. J Physiol (Lond) 553:695–706

    Google Scholar 

  • Wilson DM (1961) The central nervous system control of flight in the locust. J Exp Biol 38:471–479

    Google Scholar 

  • Wood DE, Nusbaum MP (2002) Extracellular peptidase activity tunes motor pattern modulation. J Neurosci 22:4185–4195

    CAS  PubMed  Google Scholar 

  • Wood DE, Stein W, Nusbaum MP (2000) Projection neurons with shared cotransmitters elicit different motor patterns from the same neural circuit. J Neurosci 20:8943–8953

    CAS  PubMed  Google Scholar 

  • Woolston AM, Wedderburn JF, Sillar KT (1994) Descending serotonergic spinal projections and modulation of locomotor rhythmicity in Rana temporaria embryos. Proc R Soc London Ser B 255:73–79

    CAS  PubMed  Google Scholar 

  • Yamamoto Y, Henderson CE (1999) Patterns of programmed cell death in populations of developing spinal motoneurons in chicken, mouse, and rat. Dev Biol 214:60–71

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We deeply thank Dr. Andrew Hill for carefull reading of an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Fénelon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fénelon, V.S., Le Feuvre, Y. & Meyrand, P. Phylogenetic, ontogenetic and adult adaptive plasticity of rhythmic neural networks: a common neuromodulatory mechanism?. J Comp Physiol A 190, 691–705 (2004). https://doi.org/10.1007/s00359-004-0533-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-004-0533-4

Keywords

Navigation