Skip to main content
Log in

Class-specific metrics for multidimensional data projection applied to CBIR

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Content-based image retrieval is still a challenging issue due to the inherent complexity of images and choice of the most discriminant descriptors. Recent developments in the field have introduced multidimensional projections to burst accuracy in the retrieval process, but many issues such as introduction of pattern recognition tasks and deeper user intervention to assist the process of choosing the most discriminant features still remain unaddressed. In this paper, we present a novel framework to CBIR that combines pattern recognition tasks, class-specific metrics, and multidimensional projection to devise an effective and interactive image retrieval system. User interaction plays an essential role in the computation of the final multidimensional projection from which image retrieval will be attained. Results have shown that the proposed approach outperforms existing methods, turning out to be a very attractive alternative for managing image data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Arivazhagan, S., Ganesan, L., Priyal, S.P.: Texture classification using Gabor wavelets based rotation invariant features. Pattern Recognit. Lett. 27, 1976–1982 (2006)

    Article  Google Scholar 

  2. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  3. Brandes, U., Pich, C.: Eigensolver methods for progressive multidimensional scaling of large data, pp. 42–53 (2007)

  4. Campello, R.J., Hruschka, E.R., Alves, V.S.: On the efficiency of evolutionary fuzzy clustering. J. Heuristics 15, 43–75 (2009)

    Article  Google Scholar 

  5. Chalmers, M.: A linear iteration time layout algorithm for visualising high-dimensional data. In: Proc. of Visualization ’96, pp. 127–131 (1996)

    Google Scholar 

  6. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: ideas, influences, and trends of the new age. ACM Comput. Surv. 40, 1–60 (2008)

    Article  Google Scholar 

  7. Deselaers, T., Keysers, D., Ney, H.: Features for image retrieval: An experimental comparison. Inf. Retr. 11, 77–107 (2008)

    Article  Google Scholar 

  8. Eler, D., Nakazaki, M., Paulovich, F.V., Santos, D., Andery, G., Oliveira, M., Batista Neto, J., Minghim, R.: Visual analysis of image collections. Vis. Comput. 25, 923–937 (2009)

    Article  Google Scholar 

  9. Faloutsos, C., Lin, K.: Fastmap: a fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets. In: Proc. of SIGMOD’95, vol. 24, pp. 163–174 (1995)

    Google Scholar 

  10. Gutlein, M., Frank, E., Hall, M., Karwath, A.: Large-scale attribute selection using wrappers. In: Proc. of IEEE CIDM’09, pp. 332–339 (2009)

    Google Scholar 

  11. Joia, P., Coimbra, D., Cuminato, J.A., Paulovich, F.V., Nonato, L.G.: Local affine multidimensional projection. IEEE Trans. Vis. Comput. Graph. 17, 2563–2571 (2011)

    Article  Google Scholar 

  12. Joia, P., Gomez-Nieto, E., Botelho, G., Batista Neto, J., Paiva, A., Nonato, L.G.: Projection-based image retrieval using class-specific metrics. In: Proc. of SIBGRAPI 2011 (2011)

    Google Scholar 

  13. Jourdan, F., Melangon, G.: Multiscale hybrid MDS. In: Proc. of IEEE InfoVis 2004, pp. 388–393 (2004)

    Google Scholar 

  14. Koren, Y., Carmel, L., Harel, D.: Ace: a fast multiscale eigenvectors computation for drawing huge graphs. In: Proc. of IEEE InfoVis 2002, pp. 137–144 (2002)

    Google Scholar 

  15. Kruskal, J.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1–27 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  16. Krzanowski, W.J.: Principles of Multivariate Analysis: A User’s Perspective. Oxford University Press, Oxford (1988)

    MATH  Google Scholar 

  17. Kumar, D.A., Esther, J.: Comparative study on CBIR based by color histogram, Gabor and wavelet transform. Int. J. Comput. Appl. 17(3), 37–44 (2011)

    MATH  Google Scholar 

  18. Fei-Fei, L., R.F., Perona, P.: Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories (2004). doi:10.1109/CVPR.2004.109

  19. Landwehr, N., Hall, M., Frank, E.: Logistic model trees. Mach. Learn. 59, 161–205 (2005)

    Article  MATH  Google Scholar 

  20. Maheshwary, P., Srivastav, N.: Retrieving similar image using color moment feature detector and k-means clustering of remote sensing images. In: Proc. of ICCEE 2008, pp. 821–824 (2008)

    Google Scholar 

  21. Morrison, A., Ross, G., Chalmers, M.: A hybrid layout algorithm for sub-quadratic multidimensional scaling. In: Proc. of IEEE InfoVis 2002, pp. 152–158 (2002)

    Google Scholar 

  22. Muller, H., Michoux, N., Bandon, D., Geissbuhler, A.: A review of content-based image retrieval systems in medical applications—clinical benefits and future directions. Int. J. Inf. Manag. 73(1), 1–23 (2004)

    Article  Google Scholar 

  23. Paulovich, F.V., Eler, D.M., Poco, J., Botha, C.P., Minghim, R., Nonato, L.G.: Piecewise Laplacian-based projection for interactive data exploration and organization. Comput. Graph. Forum 30, 1091–1100 (2011)

    Article  Google Scholar 

  24. Paulovich, F.V., Nonato, L.G., Minghim, R., Levkowitz, H.: Least square projection: A fast high-precision multidimensional projection technique and its application to document mapping. IEEE Trans. Vis. Comput. Graph. 14(3), 564–575 (2008)

    Article  Google Scholar 

  25. Paulovich, F.V., Silva, C., Nonato, L.G.: Two-phase mapping for projecting massive data sets. IEEE Trans. Vis. Comput. Graph. 16(6), 1281–1290 (2010)

    Article  Google Scholar 

  26. Pekalska, E., de Ridder, D., Duin, R.P.W., Kraaijweld, M.A.: A new method of generalizing Sammon mapping with application to algorithm speed-up. In: Annual Conf. Adv. School for Comput. Imag., pp. 221–228 (1999)

    Google Scholar 

  27. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  28. Seber, G.A.F.: Multivariate Observations. Wiley, New York (1984)

    Book  MATH  Google Scholar 

  29. da Silva, S.F., Batista, M.A., Barcelos, C.A.Z.: Adaptive image retrieval through the use of a genetic algorithm. In: Proc. of IEEE ICTAI 2007, vol. 1, pp. 557–564 (2007)

    Google Scholar 

  30. Smeulders, A., Worring, M., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)

    Article  Google Scholar 

  31. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., Seidel, H.-P.: Laplacian surface editing. In: Proc. of SGP 2004, pp. 175–184 (2004)

    Chapter  Google Scholar 

  32. Tenenbaum, J.B., Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  33. Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Academic Press, San Diego (2009)

    Google Scholar 

  34. Torgerson, W.: Multidimensional scaling of similarity. Psychometrika 30, 379–393 (1965)

    Article  Google Scholar 

  35. Xu, K., Zhang, H., Cohen-Or, D., Xiong, Y.: Dynamic harmonic fields for surface processing. Comput. Graph. 33(3), 391–398 (2009)

    Article  MATH  Google Scholar 

  36. Zhao, W., Chellapa, R., Phillips, P., Rosenfeld, A.: Face recognition: a literature survey. ACM Comput. Surv. 8(4), 399–458 (2000)

    Google Scholar 

  37. Zhou, X., Huang, T.: Relevance feedback in image retrieval: a comprehensive review. Multimed. Syst. 40, 262–282 (2003)

    Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their useful and constructive comments. This work was supported by FAPESP and CAPES-Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Joia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joia, P., Gomez-Nieto, E., Batista Neto, J. et al. Class-specific metrics for multidimensional data projection applied to CBIR. Vis Comput 28, 1027–1037 (2012). https://doi.org/10.1007/s00371-012-0730-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-012-0730-z

Keywords

Navigation