Skip to main content
Log in

Representational image generation for 3D objects

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Finding good representational images for 3D object exploration is a highly subjective problem in the cognitive field. The “best” or “good” definitions do not depend on any metric. We have explained the VKL distance concept and introduced a novel view descriptor called vSKL distance for finding “good” representational images. The image generation is done by projecting the surfaces of 3D objects onto the screen or any planar surface. The projection process depends on parameters such as camera position, camera vector, up vector, and clipping plane positions. In this work we present a technique to find such camera positions that the 3D object is projected in “good” or “best” way where those subjective definitions are mapped to Information Theoretical distances. We compared greedy view selection integrated vSKL with two well known techniques: VKL and VMI. vSKL performs very close to the other two, hence face coverage perturbation is minimal, but it is 3 to 4 times faster. Furthermore, the saliency information is conveyed to users with generated images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bulbul, A., Koca, C., Capin, T., Güdükbay, U.: Saliency for animated meshes with material properties. In: Proceedings of the 7th Symposium on Applied Perception in Graphics and Visualization, APGV ’10, pp. 81–88 (2010)

    Google Scholar 

  2. Mühler, K., Neugebauer, M., Tietjen, C., Preim, B.: Viewpoint selection for intervention planning. In: Proceedings of EuroVis07: Joint Eurographics—IEEE VGTC Symposium on Visualization, 23–25 May 2007, Norrköping, Sweden, pp. 267–274. Eurographics Association, Girona (2007)

    Google Scholar 

  3. Ji, G., Shen, H.-W.: Dynamic view selection for time-varying volumes. IEEE Trans. Vis. Comput. Graph. 12(5), 1109–1116 (2006)

    Article  Google Scholar 

  4. Serin, E., Adali, S.H., Balcisoy, S.: Automatic path generation for terrain navigation. Comput. Graph. 36(8), 1013–1024 (2012)

    Article  Google Scholar 

  5. Sbert, M., Plemenos, D., Feixas, M., González, F.: Viewpoint quality: measures and applications. In: Neumann, L., Sbert, M., Gooch, B., Purgathofer, W. (eds.) Computational Aesthetics, pp. 185–192. Eurographics Association, Girona (2005)

    Google Scholar 

  6. Vázquez, P.-P., Feixas, M., Sbert, M., Heidrich, W.: Viewpoint selection using viewpoint entropy. In: Proceedings of the Vision Modeling and Visualization Conference 2001, pp. 273–280. Aka GmbH, Berlin (2001)

    Google Scholar 

  7. Lee, C.H., Varshney, A., Jacobs, D.W.: Mesh saliency. ACM Trans. Graph. 24(3), 659–666 (2005)

    Article  Google Scholar 

  8. Serin, E., Doger, C., Balcisoy, S.: 3d object exploration using viewpoint and mesh saliency entropies. In: ISCIS, pp. 299–305 (2011)

    Google Scholar 

  9. Kamada, T., Kawai, S.: A simple method for computing general position in displaying three-dimensional objects. Comput. Vis. Graph. Image Process. 41(1), 43–56 (1988)

    Article  Google Scholar 

  10. Barral, P., Dorme, G., Plemenos, D.: Scene understanding techniques using a virtual camera. In: Proceedings of Eurographics 2000, Computer Graphics Forum (2000)

    Google Scholar 

  11. Secord, A., Lu, J., Finkelstein, A., Singh, M., Nealen, A.: Perceptual models of viewpoint preference. ACM Trans. Graph. 30(5) (2011)

  12. Sokolov, D., Plemenos, D.: High level methods for scene exploration. J. Virtual Real. Broadcast. 3(12) (2006)

  13. Takahashi, S., Fujishiro, I., Takeshima, Y., Nishita, T.: A feature-driven approach to locating optimal viewpoints for volume visualization. In: Proceedings of IEEE Visualization Conference (VIS 2005), 23–28 October 2005, Minneapolis, MN, USA (2005)

    Google Scholar 

  14. Bordoloi, U., Shen, H.-W.: View selection for volume rendering. In: Proceedings of IEEE Visualization Conference (VIS 2005), 23–28 October 2005, Minneapolis, MN, USA (2005)

    Google Scholar 

  15. Viola, I., Feixas, M., Sbert, M., Gröller, M.E.: Importance-driven focus of attention. IEEE Trans. Vis. Comput. Graph. 12(5), 933–940 (2006)

    Article  Google Scholar 

  16. Vázquez, P.-P., Feixas, M., Sbert, M., Heidrich, W.: Automatic view selection using viewpoint entropy and its applications to image-based modelling. Comput. Graph. Forum 22(4), 689–700 (2003)

    Article  Google Scholar 

  17. Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Neurobiol. 4(4) (1985)

  18. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  19. Chen, X., Saparov, A., Pang, B., Funkhouser, T.: Schelling points on 3d surface meshes. ACM Trans. Graph. 31(4), 29:1–29:12 (2012)

    Article  MATH  Google Scholar 

  20. Feixas, M., Sbert, M., González, F.: A unified information-theoretic framework for viewpoint selection and mesh saliency. ACM Trans. Appl. Percept. 6(1) (2009)

  21. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    MathSciNet  MATH  Google Scholar 

  22. Castelló, P., Sbert, M., Chover, M., Feixas, M.: Techniques for computing viewpoint entropy of a 3d scene. In: Proceedings of International Conference on Computational Science (ICCS 2006), 28–31 May 2006, Reading, UK, pp. 263–270 (2006)

    Google Scholar 

  23. Taubin, G.: Estimating the tensor of curvature of a surface from a polyhedral approximation. In: Procedings of International Conference on Computer Vision (ICCV 95), 20–23 June 1995, Cambridge, Massachusetts, USA, pp. 902–907 (1995)

    Chapter  Google Scholar 

  24. Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Hege, H.-C., Polthier, K. (eds.) Visualization and Mathematics III, pp. 35–57. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekrem Serin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serin, E., Sumengen, S. & Balcisoy, S. Representational image generation for 3D objects. Vis Comput 29, 675–684 (2013). https://doi.org/10.1007/s00371-013-0805-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-013-0805-5

Keywords

Navigation