Skip to main content
Log in

Real-time dissection of organs via hybrid coupling of geometric metaballs and physics-centric mesh-free method

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper systematically describes a real-time dissection approach for digital organs by strong coupling of geometric metaballs and physically correct mesh-free method. For organ geometry, we employ a novel hybrid model comprising both inner metaballs and high-resolution surface mesh with texture information. Through the use of metaballs, the organ interior is geometrically simplified via a set of overlapping spheres with different radii. As for digital organ’s physical representation, we systematically articulate a hybrid framework to interlink metaballs with physics-driven mesh-free method based on moving least squares (MLS) shape functions. MLS approach enables the direct and rapid transition from metaball geometry to local nodal formulations, which afford potential-energy-correct physical modeling and simulation over continuum domain with physical accuracy. For soft tissue dissection, the nature of our MLS-driven mesh-free method also facilitates adaptive topology modification and cutting surface reconstruction. To expedite simulation towards real-time performance, at the numerical level, we resort to position-based dynamics to simplify physical deformation to drive metaballs participating in the mesh-free formulation. Since nodal points participating in the physical process exist temporarily only in localized regions adjacent to the cutting path, our method could warrant accurate cutting surface without sacrificing real-time computational efficiency. This hybrid dissection technique has already been integrated into a VR-based laparoscopic surgery simulator with a haptic interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Simbionix. http://simbionix.com/simulators/lap-mentor/

  2. Mentice. http://www.mentice.com/

  3. Wu, J., Dick, C., Westerman, R.: Physically-based simulation of cuts in deformable bodies: a survey. Comput. Graph. Forum 34, 161–187 (2015)

    Article  Google Scholar 

  4. Wei, Y., Cotin, S., Dequidt, J.: A (near) real-time simulation method of aneurysm coil embolization. Aneurysm 8(29), 223–248 (2012)

    Google Scholar 

  5. Gianluca, D.N., Melchiorri, C.: Surgery simulations and haptic feedback: a new approach for local interaction using implicit surfaces. International Conference on Applied Bionics and Biomechanics, Venice, October, 23–28 (2010)

  6. Pan, J., Zhao, C., Zhao, X., Hao, A., Qin, H.: Metaballs-based physical modeling and deformation of organs for virtual surgery. Vis. Comput. 31(6), 947–957 (2015)

    Article  Google Scholar 

  7. Wu, J., Dick, C., Westermann, R.: Efficient collision detection for composite finite element simulation of cuts in deformable bodies. Vis. Comput. 29(6–8), 739–749 (2013)

    Article  Google Scholar 

  8. Cueto, E., Chinesta, F.: Real time simulation for computational surgery: a review. Adv. Model. Simul. Eng. Sci. 1(11), 1–18 (2014)

    Google Scholar 

  9. Jeřábková, L., Bousquet, G., Barbier, S., Faure, F., Allard, J.: Volumetric modeling and interactive cutting of deformable bodies. Prog. Biophys. Mol. Biol. 103(2–3), 217–224 (2010)

    Article  Google Scholar 

  10. Pan, J., Chang, J., Yang, X., Liang, H., Zhang, J., Qureshi, T., Howell, R., Hickish, T.: Virtual reality training and assessment in laparoscopic rectum surgery. Int. J. Med. Robot. Comput. Assist. Surg. 11(2), 194–209 (2015)

    Article  Google Scholar 

  11. Liu, T., Bargteil, A.W., O’Brien, J.F., Kavan, L.: Fast simulation of mass-spring systems. ACM Trans. Graph. 32(6), 1–7 (2013)

    Google Scholar 

  12. Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., Alexa, M.: Point based animation of elastic, plastic and melting objects. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 141–151 (2004)

  13. Jones, B., Ward, S., Jallepalli, A., Perenia, J., Bargteil, A.W.: Deformation embedding for point-based elastoplastic simulation. ACM Trans. Graph. 33(2), 1–9 (2014)

    Article  MATH  Google Scholar 

  14. Steinemann, D., Miguel, A.O., Gross, M.: Fast arbitrary splitting of deforming objects. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Sep 10, pp. 63–72 (2006)

  15. Pietroni, N., Ganovelli, F., Cignoni, P., Scopigno, R.: Splitting cubes: a fast and robust technique for virtual cutting. Vis. Comput. 25(3), 227–289 (2009)

    Article  Google Scholar 

  16. Pauly, M., Keiser, R., Adams, B., Gross, M., Guibas, L.J.: Meshless animation of fracturing solids. ACM Trans. Graph. 24(3), 957–964 (2005)

    Article  Google Scholar 

  17. Adams, B., Wicke, M.: Meshless Approximation Methods and Applications in Physics Based Modeling and Animation. Eurographics 2009, Tutorial (2009)

  18. Bender, J., Müller, M., Teschner, M., Macklin, M.: A survey on position based simulation methods in computer graphics. Comput. Graph. Forum 33(6), 228–251 (2014)

    Article  Google Scholar 

  19. Pan, J., Bai, J., Zhao, X., Hao, A., Qin, H.: Real-time haptic manipulation and cutting of hybrid soft tissue models by extended position-based dynamics. Comput. Animat. Virtual Worlds 6, 321–335 (2015)

    Article  Google Scholar 

  20. Macklin, M., Müller, M., Chentanez, N., Kim, T.Y.: Unified particle physics for real-rime applications. ACM Trans. Graph. 33(4), 1–10 (2014)

    Article  Google Scholar 

  21. France, L., Angelidis, A., Meseure, P., Cani, M.P., Lenoir, J., Faure, F., Chaillou, C.: Implicit Representations of the Human Intestines for Surgery Simulation. ESAIM: Proceedings, November 12, pp. 42–47 (2002)

  22. Rivera-Rovelo, J., Bayro-Corrochano, E.: Medical image segmentation, volume representation and registration using spheres in the geometric algebra framework. Pattern Recognit. 40, 171–188 (2007)

    Article  MATH  Google Scholar 

  23. Bradshaw, G., Sullivan, C.O.: Sphere-tree construction using dynamic medial axis approximation. In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 33–40 (2002)

  24. Sorkine-Hornung, O., Cohen-Or, D., Lipman, Y., Alexa, M., Roessl, C., Seidel, H.-P.: Laplacian Surface Editing. Eurographics Symposium on Geometry Processing, pp. 1–10 (2004)

  25. Pan, J., Yang, X., Xie, X., Willis, P., Zhang, J.: Automatic rigging for animation characters with 3D silhouette. Comput. Animat. Virtual Worlds 20(2–3), 121–131 (2009)

    Article  Google Scholar 

  26. Eberhard, P., Gaugele, T.: Simulation of cutting processes using mesh-free Lagrangian particle methods. Comput. Mech. 51(3), 261–278 (2013)

    Article  MATH  Google Scholar 

  27. Chung, T.J.: Applied Continuum Mechanics. Cambridge University Press, NY (1996)

    MATH  Google Scholar 

  28. Kallmann, M., Bieri, H., Thalmann, D.: Fully dynamic constrained delaunay triangulations. In: Kallmann, M., Bieri, H., Thalmann, D (eds.) Geometric Modeling for Scientific Visualization (Part of the series Mathematics and Visualization). Springer, Berlin, Heidelberg, pp. 241–257 (2011)

  29. Li, X., Guo, X., Wang, H., He, Y., Gu, X., Qin, H.: Meshless harmonic volumetric mapping using fundamental solution methods. IEEE Trans. Autom. Sci. Eng. 6(3), 409–422 (2009)

    Article  Google Scholar 

  30. Yang, C., Li, S., Wang, L., Hao, A., Qin, H.: Real-time physical deformation and cutting of heterogeneous objects via hybrid coupling of meshless approach and finite element method. Comput. Animat. Virtual Worlds 25(3–4), 423–435 (2014)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 61402025, 61532002 and 61672149), the National Science Foundation of USA (Nos. IIS-0949467, 1047715, and 1049448), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjun Pan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (wmv 12435 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, J., Yan, S., Qin, H. et al. Real-time dissection of organs via hybrid coupling of geometric metaballs and physics-centric mesh-free method. Vis Comput 34, 105–116 (2018). https://doi.org/10.1007/s00371-016-1317-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-016-1317-x

Keywords

Navigation