Skip to main content

Advertisement

Log in

Simple physical-empirical model of the precipitation distribution based on a tropical sea surface temperature threshold and the effects of climate change

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The observed nonlinear relationship between tropical sea surface temperature (\(T_s\)) and precipitation (P) on climate timescales, by which a threshold (\(T_c\)) must be exceeded by \(T_s\) in order for deep convection to occur, is the basis of a physical-empirical model (PEM) that we fitted to observational data and CMIP5 climate model output and used to show that, with essentially only two constant parameters (\(T_c\) and the sensitivity \(a_1\) of P to \(T_s>T_c\)), it provides a useful first-order description of the climatological and interannual variability of the large-scale distribution of tropical P given \(T_s\), as well as of the biases of the Global Climate Models (GCMs). A substantial limitation is its underestimation of the peak P in the convergence zones, as the necessary processes associated with the atmospheric circulation are not considered. The pattern of the intermodel correlation between the mean \(T_s-T_c\) for each GCM and the average P distribution is in agreement with the double ITCZ bias, featuring roughly zonally-symmetric off-equatorial maxima, rather than being regionally or hemispherically restricted. The inter-comparison of GCMs indicates a relationship between \(T_c\) with the near-equatorial low-level (850 hPa) tropospheric temperature, consistent with the interpretation that it is a measure of the convective inhibition (CIN). The underestimation of \(T_c\) is linked to the cold free tropospheric bias in the GCMs. However, the discrepancy among the observational datasets is a limitation for assessing the GCM biases from the PEM framework quantitatively. Under the RCP4.5 climate change scenario, \(T_c\) increases slightly more than the mean tropical \(T_s\), implying a stabilizing trend consistent with the amplified free tropospheric warming relative to the surface. However, since \(a_1\) increases by 10–50%/\(^\circ\)C with the surface warming, its effect dominates and results in generally positive precipitation change (\(\Delta P\)) in the equatorial regions. In the equatorial eastern-central Pacific cold tongue, \(\Delta (T_s-T_c)\) is positive, but the absolute \(T_s-T_c\) remains small, which explains the double band pattern of \(\Delta P\) along the equatorial flanks of the spuriously strong double ITCZs. When the GCM biases are corrected in the PEM, the positive \(\Delta P\) in the southeast Pacific and Atlantic oceans is substantially reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adler RF et al (2003) The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4:1147–1167

    Article  Google Scholar 

  • Ashfaq M, Skinner C, Diffenbaugh N (2011) Influence of SST biases on future climate change projections. Clim Dyn 36(7–8):1303–1319. doi:10.1007/s00382-010-0875-2

    Article  Google Scholar 

  • Back LE, Bretherton CS (2009a) On the relationship between SST gradients, boundary layer winds, and convergence over the tropical oceans. J Clim 22:4182–4196

    Article  Google Scholar 

  • Back LE, Bretherton CS (2009b) A simple model of climatological rainfall and vertical motion patterns over the tropical oceans. J Clim 22:6477–6497

    Article  Google Scholar 

  • Bellucci A, Gualdi S, Navarra A (2010) The double-ITCZ syndrome in coupled general circulation models: the role of large-scale vertical circulation regimes. J Clim 23(5):1127–1145

    Article  Google Scholar 

  • Belmadani A, Echevin V, Codron F, Takahashi K, Junquas C (2013) What dynamics drive future wind scenarios for coastal upwelling off Peru and Chile? Clim Dyn 43:1893. doi:10.1007/s00382-013-2015-2

    Article  Google Scholar 

  • Betts AK, Ridgway W (1989) Climatic equilibrium of the atmospheric convective boundary layer over a tropical ocean. J Atmos Sci 46:2621–2641

    Article  Google Scholar 

  • Bhat GS, Srinivasan J, Gadgil S (1996) Tropical deep convection, convective available potential energy and sea surface temperature. J Meteor Soc Jpn 74:155–166

    Article  Google Scholar 

  • Biasutti M, Sobel A, Kushnir Y (2006) AGCM precipitation biases in the Tropical Atlantic. J Clim 19:935–957

    Article  Google Scholar 

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Wea Rev 97:163–172

    Article  Google Scholar 

  • Bony S, Bellon G, Klocke D, Sherwood S, Fermepin S, Denvil S (2013) Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat Geosci 6:447–451

    Article  Google Scholar 

  • Bretherton CS, Widmann M, Dymnikov VP, Wallace JM, Blad I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12(7):1990–2009

  • Brown JR, Power SB, Delage FP, Colman RA, Moise AF, Murphy BF (2011) Evaluation of the south pacific convergence zone in IPCC AR4 climate model simulations of the twentieth century. J Clim 24(6):1565–1582. doi:10.1175/2010JCLI3942.1

    Article  Google Scholar 

  • Brown JR, Moise AF, Colman RA (2013) The south pacific convergence zone in CMIP5 simulations of historical and future climate. Clim Dyn 41:2179–2197. doi:10.1007/s00382-012-1591-x

    Article  Google Scholar 

  • Brown J, Matear R, Brown J, Katzfey J (2015) Precipitation projections in the tropical Pacific are sensitive to different types of SST bias adjustment. Geophys Res Lett. doi:10.1002/2015GL066184

  • Cai W, Borlace S, Lengaigne M, Pv Rensch, Collins M, Vecchi GA, Timmermann A, Santoso A, McPhaden MJ, Wu L, England M, Wang G, Guilyardi E, Jin FF (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Change. doi:10.1038/nclimate2100

  • Chadwick RI, Boutle Martin G (2013) Spatial patterns of precipitation change in CMIP5: why the rich do not get richer in the tropics. J Clim 26:3803–3822

    Article  Google Scholar 

  • Chadwick RI (2016) Which aspects of CO2 forcing and SST warming cause most uncertainty in projections of tropical rainfall change over land and ocean? J Clim 29(7):2493–2509. doi:10.1175/JCLI-D-15-0777.1

    Article  Google Scholar 

  • Chou C, Neelin JD (1999) Cirrus-detrainment temperature feedback. Geophys Res Lett 26:1295–1298

    Article  Google Scholar 

  • Chou C, Chen C, Tu J (2009) Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J Clim 22:1982–2005

    Article  Google Scholar 

  • Chung CTY, Power SB, Arblaster JM, Rashid HA, Roff GL (2014) Nonlinear precipitation response to El Niño and global warming in the Indo-Pacific. Clim Dyn 42:1837–1856

    Article  Google Scholar 

  • Cornejo-Garrido AG, Stone PH (1977) On the heat balance of the Walker circulation. J Atmos Sci 34:1155–1162

    Article  Google Scholar 

  • Collins M (2005) El Niño or La Niña-like climate change? Clim Dyn 24:89–104

    Article  Google Scholar 

  • Collins M, Knutti R, Arblaster J et al (2013) Long-term climate change: projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, Working Group I

  • Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim 19:4605–4630

    Article  Google Scholar 

  • Davey MK et al (2002) STOIC: a study of coupled model climatology and variability in tropical ocean regions. Clim Dyn 18:403–420

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Article  Google Scholar 

  • de Szoeke SP, Xie SP (2008) The tropical eastern Pacific seasonal cycle: assessment of errors and mechanisms in IPCC AR4 coupled oceanatmosphere general circulation models. J Clim 21:2573–2590

    Article  Google Scholar 

  • Dewitte B, Takahashi K (2016) Diversity of moderate El Niño events evolution: role of air-sea interactions in the eastern tropical Pacific. Submitted to Clim Dyn

  • DiNezio PA, Vecchi GA, Soden B, Kirtman BP (2009) Climate response of the Equatorial Pacific to global warming. J Clim 22:4873–4892

    Article  Google Scholar 

  • Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman and Hall, p 436

  • Friedman AR, Hwang YT, Chiang JCH, Frierson DMW (2013) Interhemispheric temperature asymmetry over the Twentieth Century and in future projections. J Clim 26:5419–5433

    Article  Google Scholar 

  • Fu RA, Del Genio D, Rossow W (1990) Behavior of deep convective clouds in the tropical Pacific deduced from ISCCP radiance. J Clim 3:1129–1152

    Article  Google Scholar 

  • Fu RA, Del Genio D, Rossow W (1994) Influence of ocean surface conditions on atmospheric vertical thermodynamic structure and deep convection. J Clim 7:1092–1108

    Article  Google Scholar 

  • Gadgil S, Pv Joseph, Joshi NV (1984) Oceanatmosphere coupling over monsoon regions. Nature 312:141–143

    Article  Google Scholar 

  • Graham N, Barnett TP (1987) Observations of sea surface temperature and convection over tropical oceans. Science 238:657–659

    Article  Google Scholar 

  • Grose MR et al (2014) Assessment of the CMIP5 global climate model simulations of the western tropical Pacific climate system and comparison to CMIP3. Int J Climatol 34:3382–3399

    Article  Google Scholar 

  • Gu G, Zhang C (2001) A spectrum analysis of synoptic-scale disturbances in the ITCZ. J Clim 14:2725–2739

    Article  Google Scholar 

  • Held IM, Soden BJ (2000) Water vapor feedback and global warming. Annu Rev Energy Environ 25:441–475

    Article  Google Scholar 

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699

    Article  Google Scholar 

  • Holland GJ, Keenan TD (1980) Diurnal variations of convection over the maritime continent. Mon Wea Rev 108:223–225

    Article  Google Scholar 

  • Huaman L, Takahashi K (2016) The vertical structure of the eastern Pacific ITCZs and associated circulation using the TRMM Precipitation Radar and in situ data. Geophys Res Lett. doi:10.1002/2016GL068835

  • Huffman GJ et al (1997) The global precipitation climatology project (GPCP) combined precipitation data set. Bull Am Meteor Soc 78:5–20

    Article  Google Scholar 

  • Huffman GJ, Bolvin DT (2011) Real-time TRMM multi-satellite precipitation analysis data set documentation. NASA/GSFC Laboratory for Atmospheres, p 43. ftp://meso.gsfc.nasa.gov/pub/trmmdocs/rt/3B4XRT_doc_V7.pdf

  • Huang P, Xie SP, Hu K, Huang G, Huang R (2013) Patterns of the seasonal response of tropical rainfall to global warming. Nat Geosci 6:357–361

    Article  Google Scholar 

  • Huang P (2014) Regional response of annual-mean tropical rainfall to global warming. Atmos Sci Lett 15:103–109

    Article  Google Scholar 

  • Hurrell J, Hack J, Shea D, Caron J, Rosinski J (2008) A new sea surface temperature and sea ice boundary dataset for the community atmosphere model. J Clim 21:5145–5153. doi:10.1175/2008JCLI2292.1

    Article  Google Scholar 

  • IPCC (2005) Guidance notes for lead authors of the IPCC fourth assessment report on addressing uncertainties

  • Johnson NC, Xie SP (2010) Changes in the sea surface temperature threshold for tropical convection. Nat Geosci 3:842–845

    Article  Google Scholar 

  • Johnson NC, Kosaka Y (2016) The impact of eastern equatorial Pacific convection on the diversity of boreal winter El Niño teleconnection patterns. Clim Dyn. doi:10.1007/s00382-016-3039-1

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteor Soc 83:1631–1643

    Article  Google Scholar 

  • Kharin VV, Zwiers FW, Zhang X, Wehner M (2013) Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim Change. doi:10.1007/s10584-013-0705-8

  • Kent C, Chadwick R, Rowell DP (2015) Understanding uncertainties in future projections of seasonal tropical precipitation. J Clim 28:4390–4413

    Article  Google Scholar 

  • Kleeman R (1991) A simple model of the atmospheric response to ENSO sea surface temperature anomalies. J Atmos Sci 48:3–18

    Article  Google Scholar 

  • Kummerow C et al (2000) The status of the tropical rainfall measuring mission (TRMM) after two years in orbit. J Appl Meteor 39:1965–1982

    Article  Google Scholar 

  • Larson K, Hartmann DL, Klein SA (1999) The role of clouds, water vapor, circulation, and boundary layer structure in the sensitivity of the tropical climate. J Clim 12:2359–2374

    Article  Google Scholar 

  • Lau KM, Shen S (1988) On the dynamics of intraseasonal oscillations and ENSO. J Atmos Sci 45:1781–1797

    Article  Google Scholar 

  • Lau K-M, Wu HT, Bony S (1997) The role of large-scale atmospheric circulation in the relationship between tropical convection and sea surface temperature. J Clim 10:381–392

    Article  Google Scholar 

  • Li G, Xie SP (2014) Tropical biases in CMIP5 multi-model ensemble: the excessive equatorial Pacific cold tongue and double ITCZ problems. J Clim. doi:10.1175/jcli-d-13-00337.1

  • Lin JL (2007) The double-ITCZ problem in IPCC AR4 coupled GCMs: oceanatmosphere feedback analysis. J Clim 20:4497–4525

    Article  Google Scholar 

  • Lintner BR, Neelin JD (2008) Eastern margin variability of the South Pacific Convergence Zone. Geophys Res Lett. doi:10.1029/2008GL034298

  • Li B, Zhou T (2011) ENSO-related principal interannual variability modes of early and late summer rainfall over East Asia in SST-driven AGCM simulations. J Geophys Res. doi:10.1029/2011JD015691

  • Liu Z, Vavrus S, He F, Wen N, Zhong Y (2005) Rethinking tropical ocean response to global warming: the enhanced equatorial warming. J Clim 18:4684–4700

    Article  Google Scholar 

  • Lu J, Zhao B (2012) The role of oceanic feedback in the climate response to doubling CO2. J Clim 25:7544–7563

    Article  Google Scholar 

  • Ma J, Xie SP (2013) Regional patterns of sea surface temperature change: a source of uncertainty in future projections of precipitation and atmospheric circulation. J Clim 26:2482–2501

    Article  Google Scholar 

  • Manabe S, Hahn DG, Holloway JL (1974) The seasonal variation of the tropical circulation as simulated by a global model of the atmosphere. J Atmos Sci 31:43–83

    Article  Google Scholar 

  • Mapes BE (1997) Equilibrium vs. activation controls on large-scale variations of tropical deep convection. In: Smith RK (ed) The physics and parameterization of moist atmospheric convection. Kluwer Acad, pp 321–358

  • Masson D, Knutti R (2011) Climate model genealogy. Geophys Res Lett. doi:10.1029/2011GL046864

  • Mechoso CR et al (1995) The seasonal cycle over the tropical Pacific in coupled oceanatmosphere general circulation models. Mon Wea Rev 123:2825–2838

  • Meehl GA, Washington WM (1996) El Niño-like climate change in a model with increased atmospheric CO2 concentrations. Nature 382:56–60

    Article  Google Scholar 

  • Meehl GA, Covey C, McAvaney B, Latif M, Stouffer RJ (2005) Overview of the coupled model intercomparison project. Bull Am Meteor Soc 86:89–93

    Article  Google Scholar 

  • Meenu S, Parameswaran K, Rajeev K (2012) Role of sea surface temperature and wind convergence in regulating convection over the tropical Indian Ocean. J Geophys Res. doi:10.1029/2011JD016947

  • Miller RL (1997) Tropical thermostats and low cloud cover. J Clim 10:409–440

    Article  Google Scholar 

  • Neale R, Slingo J (2003) The maritime continent and its role in the global climate: a GCM stugy. J Clim 16:834–848

    Article  Google Scholar 

  • Neelin JD, Held IM (1987) Modeling tropical convergence based on the moist static energy budget. Mon Wea Rev 115:3–12

    Article  Google Scholar 

  • Neelin JD, Chou C, Su H (2003) Tropical drought regions in global warming and El Niño teleconnections. Geophys Res Lett. doi:10.1029/2003GL018625

  • Newell RE (1979) Climate and the ocean. Am Sci 67:405–416

    Google Scholar 

  • Oueslati B, Bellon G (2015) The double ITCZ bias in CMIP5 models: interaction between SST, large-scale circulation and precipitation. Clim Dyn 44:585–607. doi:10.1007/s00382-015-2468-6

    Article  Google Scholar 

  • Parsons DB, Yoneyama K, Redelsperger JL (2000) The evolution of the tropical western Pacific atmosphere-ocean system following the arrival of a dry intrusion. Q J Roy Meteor Soc 126:517–548

    Article  Google Scholar 

  • Pierrehumbert R (1995) Thermostats, radiator fins, and the run-away greenhouse. J Atmos Sci 52:1784–1806

    Article  Google Scholar 

  • Power S, Delage F, Chung C, Kociuba G, Keay K (2013) Robust twenty-first-century projections of El Niño and related precipitation variability. Nature. doi:10.1038/ nature12580

  • Rajendran K, Nanjundiah RS, Gadgil S, Srinivasan J (2012) How good are the simulations of tropical SST-rainfall relationship by IPCC AR4 atmospheric and coupled models? J Earth Syst Sci. doi:10.1007/s12040-012-0185-7

  • Ramanathan V, Collins W (1991) Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature 351:27–32

    Article  Google Scholar 

  • Raymond DJ, Raga GB, Bretherton CS, Molinari J, López-Carrillo C, Fuchs Ž (2003) Convective forcing in the intertropical convergence zone of the eastern Pacific. J Atmos Sci 60:2064–2082

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625

    Article  Google Scholar 

  • Reynolds RW, Smith TM (1994) Improved global sea surface temperature analyses using optimum interpolation. J Clim 7:929–948

    Article  Google Scholar 

  • Richter I, Xie SP, Behera SK, Doi T, Masumoto Y (2014) Equatorial Atlantic variability and its relation to mean state biases in CMIP5. Clim Dyn 42(12):171–188

  • Saito K, Keenan T, Holland G, Puri K (2001) Numerical simulation of the diurnal evolution of tropical convection over the Maritime Continent. Mon Wea Rev 129:378–400

    Article  Google Scholar 

  • Seager R, Murtugudde R (1997) Ocean dynamics, thermocline adjustment, and regulation of tropical SST. J Clim 10:521–534

    Article  Google Scholar 

  • Siongco AC, Hohenegger C, Stevens B (2014) The Atlantic ITCZ bias in CMIP5 models. Clim Dyn 45:1169–1180

    Article  Google Scholar 

  • Sobel AH, Gildor H (2003) A simple time-dependent model of SST hot spots. J Clim 16:3978–3992

    Article  Google Scholar 

  • Sobel A, Camargo S (2011) Projected future seasonal changes in tropical summer climate. J Clim 24:473–487. doi:10.1175/2010JCLI3748.1

    Article  Google Scholar 

  • Song XL, Zhang GJ (2014) Role of climate feedback in El Niño-like SST response to global warming. J Clim 27:7301–7318

    Article  Google Scholar 

  • Stockdale T, Balmaseda M, Vidard A (2006) Tropical Atlantic SST prediction with coupled oceanatmosphere GCMs. J Clim 19:6047–6061

    Article  Google Scholar 

  • Sud Y, Walker G, Lau K (1999) Mechanisms regulating sea surface temperatures and deep convection in the tropics. Geophys Res Lett 26:1019–1022

    Article  Google Scholar 

  • Susskind J, Blaisdell M, Iredell L, Keita F (2011) Improved temperature sounding and quality control methodology using AIRS/AMSU data: the AIRS Science Team version 5 retrieval algorithm. IEEE Trans Geosci Remote Sens 49:883–907

    Article  Google Scholar 

  • Takahashi K (2009a) Radiative constraints on the hydrological cycle in an idealized radiativeconvective equilibrium model. J Atmos Sci. doi:10.1175/2008JAS2797.1

    Google Scholar 

  • Takahashi K (2009b) The global hydrological cycle and atmospheric shortwave absorption in climate models under CO\(_2\) forcing. J Clim. doi:10.1175/2009JCLI2674.1

  • Takahashi K, Battisti DS (2007a) Processes controlling the mean tropical Pacific precipitation pattern. Part I: The Andes and the eastern Pacific ITCZ. J Clim 20:3434–3451

    Article  Google Scholar 

  • Takahashi K, Battisti DS (2007b) Processes controlling the mean tropical Pacific precipitation pattern. Part II: The SPCZ and the southeast Pacific dry zone. J Clim 20:5696–5706

    Article  Google Scholar 

  • Takahashi K, Dewitte B (2016) Strong and moderate nonlinear El Niño regimes. Clim Dyn. doi:10.1007/s00382-015-2665-3

  • Taylor K, Stouffer R, Meehl G (2012) An overview of CMIP5 and the experiment design. Bull Am Meteor Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Tian B, Fetzer E, Kahn B, Teixeira J, Manning E, Hearty T (2013) Evaluating CMIP5 models using AIRS tropospheric air temperature and specific humidity climatology. J Geophys Res. doi:10.1029/2012JD018607. http://disc.sci.gsfc.nasa.gov/AIRS/documentation/v6_docs/v6releasedocs-1/V6_L3_User_Guide.pdf

  • Tompkins A (2001) On the relationship between tropical convection and sea surface temperature. J Clim 14:633–637. doi:10.1175/1520-0442(2001)014<0633:OTRBTC>2.0.CO;2

  • Vecchi G, Soden B (2007a) Global warming and the weakening of the tropical circulation. J Clim 20:4316–4340

    Article  Google Scholar 

  • Vecchi G, Soden B (2007b) Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature 450(7172):1066–1070

    Article  Google Scholar 

  • Waliser DE, Graham NE, Gautier C (1993) Comparison of the highly reflective cloud and outgoing long-wave radiation datasets for use in estimating tropical deep convection. J Clim 6:331–53

    Article  Google Scholar 

  • Waliser DE, Graham NE (1993) Convective cloud systems and warm-pool surface temperatures: coupled interactions and self-regulation. J Geophys Res 98:12881–12893

    Article  Google Scholar 

  • Waliser DE, Somerville RJC (1994) Preferred latitudes of the intertropical convergence zone. J Atmos Sci 51:1619–1639

    Article  Google Scholar 

  • Wallace JM (1992) Effect of deep convection on the regulation of tropical sea surface temperature. Nature 357:230–231

    Article  Google Scholar 

  • Wang B, Liu J, Yang J, Zhou T, Wu Z (2009) Distinct principal modes of early and late summer rainfall anomalies in East Asia. J Clim 22:3864–3875

    Article  Google Scholar 

  • Wang B, Li T (1993) A simple tropical atmosphere model of relevance to short-term climate variations. J Atmos Sci 50:260–284

    Article  Google Scholar 

  • Widlansky M, Webster P, Hoyos C (2010) On the location and orientation of the South Pacific Convergence Zone. Clim Dyn. doi:10.1007/s00382-010-0871-6

  • Williams M, Houze R (1987) Satellite-observed characteristics of winter monsoon cloud clusters. Mon Wea Rev 115:505–519

    Article  Google Scholar 

  • Williams E, Renno N (1993) An analysis of the conditional instability of the tropical atmosphere. Mon Weather Rev 121:21–36. doi:10.1175/1520-0493(1993) 121<0021:AAOTCI>2.0.CO;2

  • Xie S, Philander S (1994) A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus 46A:340–350

    Article  Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteor Soc 78:2539–2558

    Article  Google Scholar 

  • Xie S (2004) The shape of continents, air-sea interaction, and the rising eastern Pacific. In: Henry FD, Raymond SB (Eds) The Hadley circulation: present, past and future, vol 21 of the series Advances in Global Change Research, pp 121–152

  • Xie S, Deser C, Vecchi G, Ma J, Teng H, Wittenberg A (2010) Global warming pattern formation: sea surface temperature and rainfall. J Clim 23:966–986. doi:10.1175/2009JCLI3329.1

    Article  Google Scholar 

  • Yang G, Slingo JM (2001) The diurnal cycle in the tropics. Mon Wea Rev 129:784–801

    Article  Google Scholar 

  • Yin X, Gruber A, Arkin P (2004) Comparison of the GPCP and CMAP merged gaugesatellite monthly precipitation products for the period 1979–2001. J Hydrometeorol 5(6):1207–1222

    Article  Google Scholar 

  • Ying J, Huang P, Huang R (2015) Evaluating the formation mechanisms of the equatorial Pacific SST warming pattern in CMIP5 models. Adv Atmos Sci 33:433–441. doi:10.1007/s00376-015-5184-6

    Article  Google Scholar 

  • Yu JY, Mechoso CR (1999) Links between annual variations of Peruvian stratocumulus clouds and of SST in the eastern equatorial Pacific. J Clim 12:3305–3318

    Article  Google Scholar 

  • Zeng N, Neelin JD (1999) A land–atmosphere interaction theory for the tropical deforestation problem. J Clim 12:857–872

    Article  Google Scholar 

  • Zhang C (1993) Large-scale variability of atmospheric deep convection in relation to sea surface temperature in the tropics. J Clim 6:1898–1913

    Article  Google Scholar 

  • Zhang C (2001) Double ITCZs. J Geophys Res. doi:10.1029/2001JD900046

    Google Scholar 

  • Zhang L, Li T (2014) A simple analytical model for understanding the formation of Sea surface temperature patterns under global warming. J Clim 27:8413–8421

    Article  Google Scholar 

  • Zhang X, Liu H, Zhang M (2015) Double ITCZ in coupled ocean-atmosphere models: From CMIP3 to CMIP5. Geophys Res Lett. doi:10.1002/2015GL065973

Download references

Acknowledgements

The data used in this study were provided by the NOAA/OAR/ESRL PSD (GPCP, CMAP, OI SST, ERSST; http://www.esrl.noaa.gov/psd/), Goddard Space Flight Center Distributed Active Archive Center (TRMM 3B43 V7; http://disc.gsfc.nasa.gov/datacollection/TRMM_3B43_V7.shtml), the Hadley Centre Sea Ice and Sea Surface Temperature data set (HadISST; http://www.metoffice.gov.uk/hadobs/hadisst), ECMWF (ERA Interim reanalysis; http://apps.ecmwf.int/datasets), Atmospheric Infrared Sounder project at Jet Propulsion Laboratory (AIRS; http://airs.jpl.nasa.gov). We also acknowledge the World Climate Research Programs (WCRP) Working Group on Coupled Modeling (WGCM), which is responsible for Coupled Model Intercomparison Project (CMIP), and the U.S. Department of Energys Program for Climate Model Diagnosis and Intercomparison (PCMDI), which provides coordinating support and leads development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We thank the climate modeling groups around the world listed in Table 2 of this paper for producing and making available their model output. This study was supported by the PPR 068 “Reducción de Vulnerabilidad y Atención de Emergencias por Desastres” and the project “Impacts of Climate Variability and Climate Change on the Mangrove Ecosystem in Tumbes, Peru” (IDRC 106714).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yakelyn R. Jauregui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jauregui, Y.R., Takahashi, K. Simple physical-empirical model of the precipitation distribution based on a tropical sea surface temperature threshold and the effects of climate change. Clim Dyn 50, 2217–2237 (2018). https://doi.org/10.1007/s00382-017-3745-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3745-3

Keywords

Navigation