Skip to main content
Log in

The autophagy/lysosome pathway is impaired in SCA7 patients and SCA7 knock-in mice

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

There is still no treatment for polyglutamine disorders, but clearance of mutant proteins might represent a potential therapeutic strategy. Autophagy, the major pathway for organelle and protein turnover, has been implicated in these diseases. To determine whether the autophagy/lysosome system contributes to the pathogenesis of spinocerebellar ataxia type 7 (SCA7), caused by expansion of a polyglutamine tract in the ataxin-7 protein, we looked for biochemical, histological and transcriptomic abnormalities in components of the autophagy/lysosome pathway in a knock-in mouse model of the disease, postmortem brain and peripheral blood mononuclear cells (PBMC) from patients. In the mouse model, mutant ataxin-7 accumulated in inclusions immunoreactive for the autophagy-associated proteins mTOR, beclin-1, p62 and ubiquitin. Atypical accumulations of the autophagosome/lysosome markers LC3, LAMP-1, LAMP2 and cathepsin-D were also found in the cerebellum of the SCA7 knock-in mice. In patients, abnormal accumulations of autophagy markers were detected in the cerebellum and cerebral cortex of patients, but not in the striatum that is spared in SCA7, suggesting that autophagy might be impaired by the selective accumulation of mutant ataxin-7. In vitro studies demonstrated that the autophagic flux was impaired in cells overexpressing full-length mutant ataxin-7. Interestingly, the expression of the early autophagy-associated gene ATG12 was increased in PBMC from SCA7 patients in correlation with disease severity. These results provide evidence that the autophagy/lysosome pathway is impaired in neurons undergoing degeneration in SCA7. Autophagy/lysosome-associated molecules might, therefore, be useful markers for monitoring the effects of potential therapeutic approaches using modulators of autophagy in SCA7 and other autophagy/lysosome-associated neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

SCA7:

Spinocerebellar ataxia type 7

polyQ:

Polyglutamine

ATXN7:

Ataxin-7

KI:

Knock-in

PBMC:

Peripheral blood mononuclear cells

PC:

Purkinje cell

ATG:

Autophagy-related protein

LC3:

Microtubule-associated protein 1 light chain (MAP1) light chain 3

Lamp-1:

Lysosomal-associated membrane protein 1

Lamp-2:

Lysosomal associated membrane protein 2

PML:

Promyelocytic leukemia protein

APP:

Amyloid precursor protein

References

  1. Benton CS, de Silva R, Rutledge SL, Bohlega S, Ashizawa T, Zoghbi HY (1998) Molecular and clinical studies in SCA-7 define a broad clinical spectrum and the infantile phenotype. Neurology 51:1081–1086

    Article  PubMed  CAS  Google Scholar 

  2. Cancel G, Duyckaerts C, Holmberg M, Zander C, Yvert G, Lebre AS, Ruberg M et al (2000) Distribution of ataxin-7 in normal human brain and retina. Brain 123(Pt 12):2519–2530

    Article  PubMed  Google Scholar 

  3. Chort A, Alves S, Marinello M, Dufresnois B, Dornbierer JG, Tesson C, Latouche M et al (2013) Interferon beta induces clearance of mutant ataxin 7 and improves locomotion in SCA7 knock-in mice. Brain 136:1732–1745. doi:10.1093/brain/awt061

    Article  PubMed  Google Scholar 

  4. Chou AH, Chen CY, Chen SY, Chen WJ, Chen YL, Weng YS, Wang HL (2010) Polyglutamine-expanded ataxin-7 causes cerebellar dysfunction by inducing transcriptional dysregulation. Neurochem Int 56:329–339. doi:10.1016/j.neuint.2009.11.003

    Article  PubMed  CAS  Google Scholar 

  5. Crews L, Spencer B, Desplats P, Patrick C, Paulino A, Rockenstein E, Hansen L et al (2010) Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy. PLoS ONE 5:e9313. doi:10.1371/journal.pone.0009313

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cuervo AM, Wong E (2014) Chaperone-mediated autophagy: roles in disease and aging. Cell Res 24:92–104. doi:10.1038/cr.2013.153

    Article  PubMed  CAS  Google Scholar 

  7. David G, Abbas N, Stevanin G, Durr A, Yvert G, Cancel G, Weber C et al (1997) Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet 17:65–70

    Article  PubMed  CAS  Google Scholar 

  8. Eskelinen EL (2006) Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol Aspects Med 27:495–502. doi:10.1016/j.mam.2006.08.005

    Article  PubMed  CAS  Google Scholar 

  9. Gusella JF, MacDonald ME (2000) Molecular genetics: unmasking polyglutamine triggers in neurodegenerative disease. Nat Rev Neurosci 1:109–115

    Article  PubMed  CAS  Google Scholar 

  10. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889. doi:10.1038/nature04724

    Article  PubMed  CAS  Google Scholar 

  11. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93. doi:10.1146/annurev-genet-102808-114910

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Helmlinger D, Hardy S, Sasorith S, Klein F, Robert F, Weber C, Miguet L et al (2004) Ataxin-7 is a subunit of GCN5 histone acetyltransferase-containing complexes. Hum Mol Genet 13:1257–1265

    Article  PubMed  CAS  Google Scholar 

  13. Heng MY, Duong DK, Albin RL, Tallaksen-Greene SJ, Hunter JM, Lesort MJ, Osmand A et al (2010) Early autophagic response in a novel knock-in model of Huntington disease. Hum Mol Genet 19:3702–3720. doi:10.1093/hmg/ddq285

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Holmberg M, Duyckaerts C, Durr A, Cancel G, Gourfinkel-An I, Damier P, Faucheux B et al (1998) Spinocerebellar ataxia type 7 (SCA7): a neurodegenerative disorder with neuronal intranuclear inclusions. Hum Mol Genet 7:913–918

    Article  PubMed  CAS  Google Scholar 

  15. Ichimura Y, Komatsu M (2010) Selective degradation of p62 by autophagy. Semin Immunopathol 32:431–436. doi:10.1007/s00281-010-0220-1

    Article  PubMed  Google Scholar 

  16. Ichimura Y, Kumanomidou T, Sou YS, Mizushima T, Ezaki J, Ueno T, Kominami E et al (2008) Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem 283:22847–22857. doi:10.1074/jbc.M802182200

    Article  PubMed  CAS  Google Scholar 

  17. Janer A, Martin E, Muriel MP, Latouche M, Fujigasaki H, Ruberg M, Brice A et al (2006) PML clastosomes prevent nuclear accumulation of mutant ataxin-7 and other polyglutamine proteins. J Cell Biol 174:65–76

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728. doi:10.1093/emboj/19.21.5720

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Kegel KB, Kim M, Sapp E, McIntyre C, Castano JG, Aronin N, DiFiglia M (2000) Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J Neurosci 20:7268–7278

    PubMed  CAS  Google Scholar 

  20. Klionsky DJ, Codogno P, Cuervo AM, Deretic V, Elazar Z, Fueyo-Margareto J, Gewirtz DA et al (2010) A comprehensive glossary of autophagy-related molecules and processes. Autophagy 6:438–448. doi:10.4161/auto.6.4.12244

    Article  PubMed  PubMed Central  Google Scholar 

  21. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477 pii: S1534580704000991

    Article  PubMed  CAS  Google Scholar 

  22. Ma JF, Huang Y, Chen SD, Halliday G (2010) Immunohistochemical evidence for macroautophagy in neurones and endothelial cells in Alzheimer’s disease. Neuropathol Appl Neurobiol 36:312–319. doi:10.1111/j.1365-2990.2010.01067.x

    Article  PubMed  CAS  Google Scholar 

  23. Martinez-Vicente M, Talloczy Z, Wong E, Tang G, Koga H, Kaushik S, de Vries R et al (2010) Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nat Neurosci 13:567–576. doi:10.1038/nn.2528

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Michalik A, Martin JJ, Van Broeckhoven C (2004) Spinocerebellar ataxia type 7 associated with pigmentary retinal dystrophy. Eur J Hum Genet 12:2–15. doi:10.1038/sj.ejhg.52011085201108

    Article  PubMed  CAS  Google Scholar 

  25. Mizushima N (2010) The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 22:132–139. doi:10.1016/j.ceb.2009.12.004

    Article  PubMed  CAS  Google Scholar 

  26. Mizushima N, Noda T, Ohsumi Y (1999) Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO J 18:3888–3896. doi:10.1093/emboj/18.14.3888

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Mookerjee S, Papanikolaou T, Guyenet SJ, Sampath V, Lin A, Vitelli C, DeGiacomo F et al (2009) Posttranslational modification of ataxin-7 at lysine 257 prevents autophagy-mediated turnover of an N-terminal caspase-7 cleavage fragment. J Neurosci 29:15134–15144. doi:10.1523/JNEUROSCI.4720-09.2009

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Nakamura Y, Tagawa K, Oka T, Sasabe T, Ito H, Shiwaku H, La Spada AR et al (2012) Ataxin-7 associates with microtubules and stabilizes the cytoskeletal network. Hum Mol Genet 21:1099–1110. doi:10.1093/hmg/ddr539

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Nascimento-Ferreira I, Nobrega C, Vasconcelos-Ferreira A, Onofre I, Albuquerque D, Aveleira C, Hirai H et al (2013) Beclin 1 mitigates motor and neuropathological deficits in genetic mouse models of Machado-Joseph disease. Brain 136:2173–2188. doi:10.1093/brain/awt144

    Article  PubMed  Google Scholar 

  30. Nascimento-Ferreira I, Santos-Ferreira T, Sousa-Ferreira L, Auregan G, Onofre I, Alves S, Dufour N et al (2011) Overexpression of the autophagic beclin-1 protein clears mutant ataxin-3 and alleviates Machado-Joseph disease. Brain 134:1400–1415. doi:10.1093/brain/awr047

    Article  PubMed  Google Scholar 

  31. Palhan VB, Chen S, Peng GH, Tjernberg A, Gamper AM, Fan Y, Chait BT et al (2005) Polyglutamine-expanded ataxin-7 inhibits STAGA histone acetyltransferase activity to produce retinal degeneration. Proc Natl Acad Sci USA 102:8472–8477

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145. doi:10.1074/jbc.M702824200

    Article  PubMed  CAS  Google Scholar 

  33. Pankiv S, Lamark T, Bruun JA, Overvatn A, Bjorkoy G, Johansen T (2010) Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies. J Biol Chem 285:5941–5953. doi:10.1074/jbc.M109.039925

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, Small S et al (2008) The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 118:2190–2199. doi:10.1172/JCI33585

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Ramachandran N, Munteanu I, Wang P, Ruggieri A, Rilstone JJ, Israelian N, Naranian T et al (2013) VMA21 deficiency prevents vacuolar ATPase assembly and causes autophagic vacuolar myopathy. Acta Neuropathol 125:439–457. doi:10.1007/s00401-012-1073-6

    Article  PubMed  CAS  Google Scholar 

  36. Ravikumar B, Acevedo-Arozena A, Imarisio S, Berger Z, Vacher C, O’Kane CJ, Brown SD et al (2005) Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat Genet 37:771–776. doi:10.1038/ng1591

    Article  PubMed  CAS  Google Scholar 

  37. Ravikumar B, Duden R, Rubinsztein DC (2002) Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 11:1107–1117

    Article  PubMed  CAS  Google Scholar 

  38. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F et al (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595. doi:10.1038/ng1362ng1362

    Article  PubMed  CAS  Google Scholar 

  39. Rosenfeldt MT, Nixon C, Liu E, Mah LY, Ryan KM (2012) Analysis of macroautophagy by immunohistochemistry. Autophagy 8:963–969. doi:10.4161/auto.20186

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Rub U, Schols L, Paulson H, Auburger G, Kermer P, Jen JC, Seidel K et al (2013) Clinical features, neurogenetics and neuropathology of the polyglutamine spinocerebellar ataxias type 1, 2, 3, 6 and 7. Prog Neurobiol 104:38–66. doi:10.1016/j.pneurobio.2013.01.001

    Article  PubMed  Google Scholar 

  41. Sarkar S, Krishna G, Imarisio S, Saiki S, O’Kane CJ, Rubinsztein DC (2008) A rational mechanism for combination treatment of Huntington’s disease using lithium and rapamycin. Hum Mol Genet 17:170–178. doi:10.1093/hmg/ddm294

    Article  PubMed  CAS  Google Scholar 

  42. Sarkar S, Perlstein EO, Imarisio S, Pineau S, Cordenier A, Maglathlin RL, Webster JA et al (2007) Small molecules enhance autophagy and reduce toxicity in Huntington’s disease models. Nat Chem Biol 3:331–338. doi:10.1038/nchembio883

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Seidel K, Siswanto S, Brunt ER, den Dunnen W, Korf HW, Rub U (2012) Brain pathology of spinocerebellar ataxias. Acta Neuropathol 124:1–21. doi:10.1007/s00401-012-1000-x

    Article  PubMed  CAS  Google Scholar 

  44. Shibata M, Lu T, Furuya T, Degterev A, Mizushima N, Yoshimori T, MacDonald M et al (2006) Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J Biol Chem 281:14474–14485. doi:10.1074/jbc.M600364200

    Article  PubMed  CAS  Google Scholar 

  45. Shvets E, Fass E, Scherz-Shouval R, Elazar Z (2008) The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes. J Cell Sci 121:2685–2695. doi:10.1242/jcs.026005

    Article  PubMed  CAS  Google Scholar 

  46. Sittler A, Walter S, Wedemeyer N, Hasenbank R, Scherzinger E, Eickhoff H, Bates GP et al (1998) SH3GL3 associates with the Huntingtin exon 1 protein and promotes the formation of polygln-containing protein aggregates. Mol Cell 2:427–436

    Article  PubMed  CAS  Google Scholar 

  47. Spencer B, Potkar R, Trejo M, Rockenstein E, Patrick C, Gindi R, Adame A et al (2009) Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J Neurosci 29:13578–13588. doi:10.1523/JNEUROSCI.4390-09.2009

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, Bredesen D, Richardson A et al (2010) Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer’s disease. PLoS ONE 5:e9979. doi:10.1371/journal.pone.0009979

    Article  PubMed  PubMed Central  Google Scholar 

  49. Stevanin G, Durr A, Brice A (2000) Clinical and molecular advances in autosomal dominant cerebellar ataxias: from genotype to phenotype and physiopathology. Eur J Hum Genet 8:4–18. doi:10.1038/sj.ejhg.5200403

    Article  PubMed  CAS  Google Scholar 

  50. Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL, Raman R et al (2005) Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science 307:1282–1288. doi:10.1126/science.1105681

    Article  PubMed  CAS  Google Scholar 

  51. Tanaka M, Machida Y, Niu S, Ikeda T, Jana NR, Doi H, Kurosawa M et al (2004) Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat Med 10:148–154

    Article  PubMed  CAS  Google Scholar 

  52. van de Warrenburg BP, Notermans NC, Schelhaas HJ, van Alfen N, Sinke RJ, Knoers NV, Zwarts MJ et al (2004) Peripheral nerve involvement in spinocerebellar ataxias. Arch Neurol 61:257–261. doi:10.1001/archneur.61.2.25761/2/257

    Article  PubMed  Google Scholar 

  53. Wong E, Cuervo AM (2010) Autophagy gone awry in neurodegenerative diseases. Nat Neurosci 13:805–811. doi:10.1038/nn.2575

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Wong E, Cuervo AM (2010) Integration of clearance mechanisms: the proteasome and autophagy. Cold Spring Harb Perspect Biol 2:a006734. doi:10.1101/cshperspect.a006734

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Wu G, Wang X, Feng X, Zhang A, Li J, Gu K, Huang J et al (2011) Altered expression of autophagic genes in the peripheral leukocytes of patients with sporadic Parkinson’s disease. Brain Res 1394:105–111. doi:10.1016/j.brainres.2011.04.013

    Article  PubMed  CAS  Google Scholar 

  56. Yoo SY, Pennesi ME, Weeber EJ, Xu B, Atkinson R, Chen S, Armstrong DL et al (2003) SCA7 knockin mice model human SCA7 and reveal gradual accumulation of mutant ataxin-7 in neurons and abnormalities in short-term plasticity. Neuron 37:383–401

    Article  PubMed  CAS  Google Scholar 

  57. Yu X, Ajayi A, Boga NR, Strom AL (2012) Differential degradation of full-length and cleaved ataxin-7 fragments in a novel stable inducible SCA7 model. J Mol Neurosci 47:219–233. doi:10.1007/s12031-012-9722-8

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Yue Z, Holstein GR, Chait BT, Wang QJ (2009) Using genetic mouse models to study the biology and pathology of autophagy in the central nervous system. Methods Enzymol 453:159–180. doi:10.1016/S0076-6879(08)04008-1

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the French National Research Agency (ANR-07-MRAR-025-01 to A.S), the French Association against Myopathies (AFM, to AB and long-term fellowship to SA), the French association Connaitre les Syndrômes Cérébelleux (short-term fellowship to SA), and the French Foundation for Medical Research (FRM, to JCC and FC-D), as well as the “Investissements d’avenir” program ANR-10-IAIHU-06 (to the Brain and Spine Institute, Paris). We thank Prof. H. Zoghbi (Baylor College of Medicine, Houston, Texas, USA) for the SCA7 KI mice. We are grateful to Pr. C. Duyckaerts for brain samples and Drs. C. Marelli and C. Jauffret for blood samples from SCA7 patients. We would also like to thank the Cellular Imaging Platform of the Pitié Salpêtrière, especially Dr. A. Dauphin, for advice on confocal imaging, and J. Garrigue and W. Carpentier for technical assistance. The authors have no additional financial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sandro Alves or Annie Sittler.

Additional information

F. Cormier-Dequaire and M. Marinello contributed equally.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, S., Cormier-Dequaire, F., Marinello, M. et al. The autophagy/lysosome pathway is impaired in SCA7 patients and SCA7 knock-in mice. Acta Neuropathol 128, 705–722 (2014). https://doi.org/10.1007/s00401-014-1289-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-014-1289-8

Keywords

Navigation