Skip to main content

Advertisement

Log in

Evidence for altered dendritic spine compartmentalization in Alzheimer’s disease and functional effects in a mouse model

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is associated with a progressive loss of synapses and neurons. Studies in animal models indicate that morphological alterations of dendritic spines precede synapse loss, increasing the proportion of large and short (“stubby”) spines. Whether similar alterations occur in human patients, and what their functional consequences could be, is not known. We analyzed biopsies from AD patients and APP x presenilin 1 knock-in mice that were previously shown to present a loss of pyramidal neurons in the CA1 area of the hippocampus. We observed that the proportion of stubby spines and the width of spine necks are inversely correlated with synapse density in frontal cortical biopsies from non-AD and AD patients. In mice, the reduction in the density of synapses in the stratum radiatum was preceded by an alteration of spine morphology, with a reduction of their length and an enlargement of their neck. Serial sectioning examined with electron microscopy allowed us to precisely measure spine parameters. Mathematical modeling indicated that the shortening and widening of the necks should alter the electrical compartmentalization of the spines, leading to reduced postsynaptic potentials in spine heads, but not in soma. Accordingly, there was no alteration in basal synaptic transmission, but long-term potentiation and spatial memory were impaired. These results indicate that an alteration of spine morphology could be involved in the early cognitive deficits associated with AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alonso-Nanclares L, Merino-Serrais P, Gonzalez S, DeFelipe J (2013) Synaptic changes in the dentate gyrus of APP/PS1 transgenic mice revealed by electron microscopy. J Neuropathol Exp Neurol 72:386–395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Alvarez VA, Sabatini BL (2007) Anatomical and physiological plasticity of dendritic spines. Annu Rev Neurosci 30:79–97

    Article  PubMed  CAS  Google Scholar 

  3. Anderson WW, Collingridge GL (2001) The LTP Program: a data acquisition program for on-line analysis of long-term potentiation and other synaptic events. J Neurosci Methods 108:71–83

    Article  PubMed  CAS  Google Scholar 

  4. Bär J, Kobler O, van Bommel B, Mikhaylova M (2016) Periodic F-actin structures shape the neck of dendritic spines. Sci Rep 6:37136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Barbeau E, Didic M, Tramoni E, Felician O, Joubert S, Sontheimer A, Ceccaldi M, Poncet M (2004) Evaluation of visual recognition memory in MCI patients. Neurology 62:1317–1322

    Article  PubMed  CAS  Google Scholar 

  6. Beaulieu-Laroche L, Harnett MT (2018) Dendritic spines prevent synaptic voltage clamp. Neuron 97:75–82

    Article  PubMed  CAS  Google Scholar 

  7. Breyhan H, Wirths O, Duan K, Marcello A, Rettig J, Bayer TA (2009) APP/PS1KI bigenic mice develop early synaptic deficits and hippocampus atrophy. Acta Neuropathol 117:677–685

    Article  PubMed  Google Scholar 

  8. Casas C, Sergeant N, Itier J-M, Blanchard V, Wirths O, van der Kolk N, Vingtdeux V, van de Steeg E, Ret G, Canton T, Drobecq H, Clark A, Bonici B, Delacourte A, Benavides J, Schmitz C, Tremp G, Bayer TA, Benoit P, Pradier L (2004) Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Abeta42 accumulation in a novel Alzheimer transgenic model. Am J Pathol 165:1289–1300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Davies CA, Mann DM, Sumpter PQ, Yates PO (1987) A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s disease. J Neurol Sci 78:151–164

    Article  PubMed  CAS  Google Scholar 

  10. de Ruiter JP, Uylings HB (1987) Morphometric and dendritic analysis of fascia dentata granule cells in human aging and senile dementia. Brain Res 402:217–229

    Article  PubMed  Google Scholar 

  11. DeKosky ST, Scheff SW (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 27:457–464

    Article  PubMed  CAS  Google Scholar 

  12. Domínguez-Álvaro M, Montero-Crespo M, Blazquez-Llorca L, Insausti R, DeFelipe J, Alonso-Nanclares L (2018) Three-dimensional analysis of synapses in the transentorhinal cortex of Alzheimer’s disease patients. Acta Neuropathol Commun 6:20

    Article  PubMed  PubMed Central  Google Scholar 

  13. Duyckaerts C, Delatour B, Potier M-C (2009) Classification and basic pathology of Alzheimer disease. Acta Neuropathol 118:5–36

    Article  PubMed  CAS  Google Scholar 

  14. Efimova N, Korobova F, Stankewich MC, Moberly AH, Stolz DB, Wang J, Kashina A, Ma M, Svitkina T (2017) βIII Spectrin is necessary for formation of the constricted neck of dendritic spines and regulation of synaptic activity in neurons. J Neurosci 37:6442–6459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Efron B (1987) Better bootstrap confidence intervals. J Am Stat Assoc 82:171–185

    Article  Google Scholar 

  16. Einstein G, Buranosky R, Crain BJ (1994) Dendritic pathology of granule cells in Alzheimer’s disease is unrelated to neuritic plaques. J Neurosci 14:5077–5088

    Article  PubMed  CAS  Google Scholar 

  17. El Hachimi KH, Foncin J-F (1990) Loss of dendritic spines in Alzheimer’s disease. C R Acad Sci III 311:397–402

    PubMed  Google Scholar 

  18. El Hachimi KH, Verga L, Giaccone G, Tagliavini F, Frangione B, Bugiani O, Foncin J-F (1991) Relationship between non-fibrillary amyloid precursors and cell processes in the cortical neuropil of Alzheimer patients. Neurosci Lett 129:119–122

    Article  PubMed  Google Scholar 

  19. Faure A, Verret L, Bozon B, El Tayara NET, Ly M, Kober F, Dhenain M, Rampon C, Delatour B (2011) Impaired neurogenesis, neuronal loss, and brain functional deficits in the APPxPS1-Ki mouse model of Alzheimer’s disease. Neurobiol Aging 32:407–418

    Article  PubMed  CAS  Google Scholar 

  20. Fiala JC (2005) Reconstruct: a free editor for serial section microscopy. J Microsc 218:52–61

    Article  PubMed  CAS  Google Scholar 

  21. Fiala JC, Spacek J, Harris KM (2008) Dendrite structure. In: Stuart G, Spruston N, Häusser M (eds) Dendrites, 2nd edn. Oxford University Press, Oxford, pp 1–40

    Google Scholar 

  22. Fu AK, Ip NY (2017) Regulation of postsynaptic signaling in structural synaptic plasticity. Curr Opin Neurobiol 45:148–155

    Article  PubMed  CAS  Google Scholar 

  23. Gundersen HJ, Bendtsen TF, Korbo L, Marcussen N, Møller A, Nielsen K, Nyengaard JR, Pakkenberg B, Sørensen FB, Vesterby A (1988) Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. APMIS 96:379–394

    Article  PubMed  CAS  Google Scholar 

  24. Harris KM, Stevens JK (1989) Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J Neurosci 9:2982–2997

    Article  PubMed  CAS  Google Scholar 

  25. Harris KM, Jensen FE, Tsao B (1992) Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J Neurosci 12:2685–2705

    Article  PubMed  CAS  Google Scholar 

  26. Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:1179–1209

    Article  PubMed  CAS  Google Scholar 

  27. Hines ML, Carnevale NT (2001) NEURON: a tool for neuroscientists. Neuroscientist 7:123–135

    Article  PubMed  CAS  Google Scholar 

  28. Horellou S, Pascual O, Triller A, Marty S (2014) Adaptive and non-adaptive changes in activity-deprived presynaptic terminals. Eur J Neurosci 39:61–71

    Article  PubMed  Google Scholar 

  29. Huganir RL, Nicoll RA (2013) AMPARs and synaptic plasticity: the last 25 years. Neuron 80:704–717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Jacobsen JS, Wu C-C, Redwine JM, Comery TA, Arias R, Bowlby M, Martone R, Morrison JH, Pangalos MN, Reinhart PH, Bloom FE (2006) Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 103:5161–5166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Kim IH, Racz B, Wang H, Burianek L, Weinberg R, Yasuda R, Wetsel WC, Soderling SH (2013) Disruption of Arp2/3 results in asymmetric structural plasticity of dendritic spines and progressive synaptic and behavioral abnormalities. J Neurosci 33:6081–6092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kommaddi RP, Das D, Karunakaran S, Nanguneri S, Bapat D, Ray A, Shaw E, Bennett DA, Nair D, Ravindranath V (2018) Aβ mediates F-actin disassembly in dendritic spines leading to cognitive deficits in Alzheimer’s disease. J Neurosci 38:1085–1099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Korobova F, Svitkina T (2010) Molecular architecture of synaptic actin cytoskeleton in hippocampal neurons reveals a mechanism of dendritic spine morphogenesis. Mol Biol Cell 21:165–176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kril J, Patel S, Harding A, Halliday G (2002) Neuron loss from the hippocampus of Alzheimer’s disease exceeds extracellular neurofibrillary tangle formation. Acta Neuropathol 103:370–376

    Article  PubMed  Google Scholar 

  35. Lanz T, Carter D, Merchant K (2003) Dendritic spine loss in the hippocampus of young PDAPP and Tg2576 mice and its prevention by the ApoE2 genotype. Neurobiol Dis 13:246–253

    Article  PubMed  CAS  Google Scholar 

  36. Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84:87–136

    Article  PubMed  CAS  Google Scholar 

  37. Merino-Serrais P, Knafo S, Alonso-Nanclares L, Fernaud-Espinosa I, DeFelipe J (2011) Layer-specific alterations to CA1 dendritic spines in a mouse model of Alzheimer’s disease. Hippocampus 21:1037–1044

    Article  PubMed  CAS  Google Scholar 

  38. Miermans CA, Kusters RP, Hoogenraad CC, Storm C (2017) Biophysical model of the role of actin remodeling on dendritic spine morphology. PLoS One 12:e0170113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Moolman DL, Vitolo OV, Vonsattel J-PG, Shelanski ML (2004) Dendrite and dendritic spine alterations in Alzheimer models. J Neurocytol 33:377–387

    Article  PubMed  CAS  Google Scholar 

  40. Nägerl UV, Eberhorn N, Cambridge SB, Bonhoeffer T (2004) Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron 44:759–767

    Article  PubMed  Google Scholar 

  41. Neuman KM, Molina-Campos E, Musial TF, Price AL, Oh KJ, Wolke ML, Buss EW, Scheff SW, Mufson EJ, Nicholson DA (2015) Evidence for Alzheimer’s disease-linked synapse loss and compensation in mouse and human hippocampal CA1 pyramidal neurons. Brain Struct Funct 220:3143–3165

    Article  PubMed  CAS  Google Scholar 

  42. Nishiyama J, Yasuda R (2015) Biochemical computation for spine structural plasticity. Neuron 87:63–75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Potier B, Billard J-M, Rivière S, Sinet P-M, Denis I, Champeil-Potokar G, Grintal B, Jouvenceau A, Kollen M, Dutar P (2010) Reduction in glutamate uptake is associated with extrasynaptic NMDA and metabotropic glutamate receptor activation at the hippocampal CA1 synapse of aged rats: synaptic effects of reduced glutamate uptake in the aged rat hippocampus. Aging Cell 9:722–735

    Article  PubMed  CAS  Google Scholar 

  44. Pozueta J, Lefort R, Ribe EM, Troy CM, Arancio O, Shelanski M (2013) Caspase-2 is required for dendritic spine and behavioural alterations in J20 APP transgenic mice. Nat Commun 4:1939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Rasband W (1997) ImageJ, US National Institutes of Health, Bethesda, Maryland, USA. http://rsb.info.nih.gov/ij/, 1997–2016

  46. Scheff SW, DeKosky ST, Price DA (1990) Quantitative assessment of cortical synaptic density in Alzheimer’s disease. Neurobiol Aging 11:29–37

    Article  PubMed  CAS  Google Scholar 

  47. Scheff SW, Price DA (2003) Synaptic pathology in Alzheimer’s disease: a review of ultrastructural studies. Neurobiol Aging 24:1029–1046

    Article  PubMed  CAS  Google Scholar 

  48. Scheff SW, Price DA, Schmitt FA, DeKosky ST, Mufson EJ (2007) Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 68:1501–1508

    Article  PubMed  CAS  Google Scholar 

  49. Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791

    Article  PubMed  CAS  Google Scholar 

  50. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Sheng M, Sabatini BL, Südhof TC (2012) Synapses and Alzheimer’s disease. Cold Spring Harb Perspect Biol 4:a005777

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin J-F, Bruni AC, Montesi MP, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen D, Brookes A, Sanseau P, Polinsky RJ, Wasco W, Da Silva HA, Haines JL, Perkicak-Vance MA, Tanzi RE, Roses AD, Fraser PE, Rommens JM, St George-Hyslop PH (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375:754–760

    Article  PubMed  CAS  Google Scholar 

  53. Spires TL, Meyer-Luehmann M, Stern EA, McLean PJ, Skoch J, Nguyen PT, Bacskai BJ, Hyman BT (2005) Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. J Neurosci 25:7278–7287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Steele JW, Brautigam H, Short JA, Sowa A, Shi M, Yadav A, Weaver CM, Westaway D, Fraser PE, St George-Hyslop PH, Gandy S, Hof PR, Dickstein DL (2014) Early fear memory defects are associated with altered synaptic plasticity and molecular architecture in the TgCRND8 Alzheimer’s disease mouse model. J Comp Neurol 522:2319–2335

    Article  PubMed  PubMed Central  Google Scholar 

  55. Tackenberg C, Brandt R (2009) Divergent pathways mediate spine alterations and cell death induced by amyloid-, wild-type tau, and R406W tau. J Neurosci 29:14439–14450

    Article  PubMed  CAS  Google Scholar 

  56. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580

    Article  PubMed  CAS  Google Scholar 

  57. Tønnesen J, Katona G, Rózsa B, Nägerl UV (2014) Spine neck plasticity regulates compartmentalization of synapses. Nat Neurosci 17:678–685

    Article  PubMed  CAS  Google Scholar 

  58. Tønnesen J, Nägerl UV (2016) Dendritic spines as tunable regulators of synaptic signals. Front Psychiatry 7:101

    Article  PubMed  PubMed Central  Google Scholar 

  59. Viana da Silva S, Haberl MG, Zhang P, Bethge P, Lemos C, Gonçalves N, Gorlewicz A, Malezieux M, Gonçalves FQ, Grosjean N, Blanchet C, Frick A, Nägerl UV, Cunha RA, Mulle C (2016) Early synaptic deficits in the APP/PS1 mouse model of Alzheimer’s disease involve neuronal adenosine A2A receptors. Nat Commun 7:11915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. West MJ, Coleman PD, Flood DG, Troncoso JC (1994) Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet 344:769–772

    Article  PubMed  CAS  Google Scholar 

  61. Wiegert JS, Oertner TG (2013) Long-term depression triggers the selective elimination of weakly integrated synapses. Proc Natl Acad Sci USA 110:E4510–E4519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Wirths O, Breyhan H, Schäfer S, Roth C, Bayer TA (2008) Deficits in working memory and motor performance in the APP/PS1ki mouse model for Alzheimer’s disease. Neurobiol Aging 29:891–901

    Article  PubMed  CAS  Google Scholar 

  63. Zou C, Montagna E, Shi Y, Peters F, Blazquez-Llorca L, Shi S, Filser S, Dorostkar MM, Herms J (2015) Intraneuronal APP and extracellular Aβ independently cause dendritic spine pathology in transgenic mouse models of Alzheimer’s disease. Acta Neuropathol 129:909–920

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Jean-François Foncin for having established a collection of biopsies taken during neurosurgery (Profs. Le Beau and Philippon) and having provided it to us, and for critical reading of the manuscript. We thank Pascal Barneoud and Laurent Pradier from Sanofi for sharing the APPxPS1-KI mouse line and for stimulating discussions. We also thank Patricia Bassereau for helpful discussions, and Laura Xicota for help with statistics. Serge Marty and Alexandre Androuin were supported by a grant from France Alzheimer. The present work was also supported by funding from the program Investissements d’avenir ANR-10-IAIHU-06, ANR-11-INBS-0011-NeurATRIS and the Fondation pour la Recherche Médicale. Antoine Triller was supported by Grants from Association France Alzheimer (Project R12035JJ), the Agence Nationale de la Recherche (ANR-09-MNPS-013-01 and ANR-11-BSV8-021-01), the ERC advanced research grant ‘PlasltInhib’, and the program “Investissements d’Avenir” (ANR-10-LABX-54 MEMO LIFE and ANR-11-IDEX-0001-02 PSL* Research University). We also thank the imaging facility of the IBENS and the imaging facility icm.Quant of the ICM, particularly Dominique Langui and Asha Baskaran for the electron microscopy. This work was partly carried out on the ICM vectorology platform with the help of André Sobczyk, and HISTOMICS platform with the help of Annick Prigent. We also thank the biostatistics facility of the ICM and particularly François-Xavier Lejeune. All animal work was conducted at the ICM PHENOPARC Core Facility. We thank Magali Dumont, Nadège Sarrazin, Delphine Roussel, and Joanna Droesbeke from the PHENO.ICMice for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Marty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Androuin, A., Potier, B., Nägerl, U.V. et al. Evidence for altered dendritic spine compartmentalization in Alzheimer’s disease and functional effects in a mouse model. Acta Neuropathol 135, 839–854 (2018). https://doi.org/10.1007/s00401-018-1847-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-018-1847-6

Keywords

Navigation