Skip to main content

Advertisement

Log in

Early defects in translation elongation factor 1α levels at excitatory synapses in α-synucleinopathy

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Cognitive decline and dementia in neurodegenerative diseases are associated with synapse dysfunction and loss, which may precede neuron loss by several years. While misfolded and aggregated α-synuclein is recognized in the disease progression of synucleinopathies, the nature of glutamatergic synapse dysfunction and loss remains incompletely understood. Using fluorescence-activated synaptosome sorting (FASS), we enriched excitatory glutamatergic synaptosomes from mice overexpressing human alpha-synuclein (h-αS) and wild-type littermates to unprecedented purity. Subsequent label-free proteomic quantification revealed a set of proteins differentially expressed upon human alpha-synuclein overexpression. These include overrepresented proteins involved in the synaptic vesicle cycle, ER–Golgi trafficking, metabolism and cytoskeleton. Unexpectedly, we found and validated a steep reduction of eukaryotic translation elongation factor 1 alpha (eEF1A1) levels in excitatory synapses at early stages of h-αS mouse model pathology. While eEF1A1 reduction correlated with the loss of postsynapses, its immunoreactivity was found on both sides of excitatory synapses. Moreover, we observed a reduction in eEF1A1 immunoreactivity in the cingulate gyrus neuropil of patients with Lewy body disease along with a reduction in PSD95 levels. Altogether, our results suggest a link between structural impairments underlying cognitive decline in neurodegenerative disorders and local synaptic defects. eEF1A1 may therefore represent a limiting factor to synapse maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abbas W, Kumar A, Herbein G (2015) The eEF1A proteins: at the crossroads of oncogenesis, apoptosis, and viral infections. Front Oncol 5:75. https://doi.org/10.3389/fonc.2015.00075

    Article  PubMed  PubMed Central  Google Scholar 

  2. Amschl D, Neddens J, Havas D, Flunkert S, Rabl R, Römer H, Rockenstein E, Masliah E, Windisch M, Hutter-Paier B (2013) Time course and progression of wild type α-Synuclein accumulation in a transgenic mouse model. BMC Neurosci 14:1

    Article  Google Scholar 

  3. Beckelman BC, Day S, Zhou X, Donohue M, Gouras GK, Klann E, Keene CD, Ma T (2016) Dysregulation of elongation factor 1A expression is correlated with synaptic plasticity impairments in Alzheimer’s disease. J Alzheimers Dis JAD 54:669–678. https://doi.org/10.3233/JAD-160036

    Article  CAS  PubMed  Google Scholar 

  4. Bellucci A, Zaltieri M, Navarria L, Grigoletto J, Missale C, Spano P (2012) From α-synuclein to synaptic dysfunctions: new insights into the pathophysiology of Parkinson’s disease. Brain Res 1476:183–202. https://doi.org/10.1016/j.brainres.2012.04.014

    Article  CAS  PubMed  Google Scholar 

  5. Ben Gedalya T, Loeb V, Israeli E, Altschuler Y, Selkoe DJ, Sharon R (2009) α-Synuclein and polyunsaturated fatty acids promote clathrin-mediated endocytosis and synaptic vesicle recycling. Traffic 10:218–234. https://doi.org/10.1111/j.1600-0854.2008.00853.x

    Article  CAS  PubMed  Google Scholar 

  6. Bendor JT, Logan TP, Edwards RH (2013) The function of α-synuclein. Neuron 79:1044–1066. https://doi.org/10.1016/j.neuron.2013.09.004

    Article  CAS  PubMed  Google Scholar 

  7. Biesemann C, Grønborg M, Luquet E, Wichert SP, Bernard V, Bungers SR, Cooper B, Varoqueaux F, Li L, Byrne JA, Urlaub H, Jahn O, Brose N, Herzog E (2014) Proteomic screening of glutamatergic mouse brain synaptosomes isolated by fluorescence activated sorting. EMBO J 33:157–170. https://doi.org/10.1002/embj.201386120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Blumenstock S, Rodrigues EF, Peters F, Blazquez-Llorca L, Schmidt F, Giese A, Herms J (2017) Seeding and transgenic overexpression of alpha-synuclein triggers dendritic spine pathology in the neocortex. EMBO Mol Med 9:716–731. https://doi.org/10.15252/emmm.201607305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Braak H, Del Tredici K, Rüb U, de Vos RA, Steur ENJ, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  10. Bunai F, Ando K, Ueno H, Numata O (2006) Tetrahymena eukaryotic translation elongation factor 1A (eEF1A) bundles filamentous actin through dimer formation. J Biochem (Tokyo) 140:393–399. https://doi.org/10.1093/jb/mvj169

    Article  CAS  Google Scholar 

  11. Calì T, Ottolini D, Negro A, Brini M (2012) α-Synuclein controls mitochondrial calcium homeostasis by enhancing endoplasmic reticulum–mitochondria interactions. J Biol Chem 287:17914–17929. https://doi.org/10.1074/jbc.M111.302794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Calo L, Wegrzynowicz M, Santivañez-Perez J, Grazia Spillantini M (2016) Synaptic failure and α-synuclein. Mov Disord 31:169–177. https://doi.org/10.1002/mds.26479

    Article  CAS  PubMed  Google Scholar 

  13. Caraveo G, Auluck PK, Whitesell L, Chung CY, Baru V, Mosharov EV, Yan X, Ben-Johny M, Soste M, Picotti P, Kim H, Caldwell KA, Caldwell GA, Sulzer D, Yue DT, Lindquist S (2014) Calcineurin determines toxic versus beneficial responses to -synuclein. Proc Natl Acad Sci 111:E3544–E3552. https://doi.org/10.1073/pnas.1413201111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM (2006) Cell Profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100. https://doi.org/10.1186/gb-2006-7-10-r100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cartelli D, Aliverti A, Barbiroli A, Santambrogio C, Ragg EM, Casagrande FVM, Cantele F, Beltramone S, Marangon J, De Gregorio C, Pandini V, Emanuele M, Chieregatti E, Pieraccini S, Holmqvist S, Bubacco L, Roybon L, Pezzoli G, Grandori R, Arnal I, Cappelletti G (2016) α-Synuclein is a novel microtubule dynamase. Sci Rep 6:33289. https://doi.org/10.1038/srep33289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chai YJ, Sierecki E, Tomatis VM, Gormal RS, Giles N, Morrow IC, Xia D, Götz J, Parton RG, Collins BM, Gambin Y, Meunier FA (2016) Munc18-1 is a molecular chaperone for α-synuclein, controlling its self-replicating aggregation. J Cell Biol 214:705–718. https://doi.org/10.1083/jcb.201512016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cho S-J, Jung J-S, Ko BH, Jin I, Moon IS (2004) Presence of translation elongation factor-1A (eEF1A) in the excitatory postsynaptic density of rat cerebral cortex. Neurosci Lett 366:29–33. https://doi.org/10.1016/j.neulet.2004.05.036

    Article  CAS  PubMed  Google Scholar 

  18. Cho S-J, Lee H-S, Dutta S, Seog D-H, Moon I-S (2012) Translation elongation factor-1A1 (eEF1A1) localizes to the spine by domain III. BMB Rep 45:227–232. https://doi.org/10.5483/BMBRep

    Article  CAS  PubMed  Google Scholar 

  19. Chuang S-M, Chen L, Lambertson D, Anand M, Kinzy TG, Madura K (2005) Proteasome-mediated degradation of cotranslationally damaged proteins involves translation elongation factor 1A. Mol Cell Biol 25:403–413. https://doi.org/10.1128/MCB.25.1.403-413.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cohen LD, Zuchman R, Sorokina O, Müller A, Dieterich DC, Armstrong JD, Ziv T, Ziv NE (2013) Metabolic turnover of synaptic proteins: kinetics, interdependencies and implications for synaptic maintenance. PLoS ONE 8:e63191. https://doi.org/10.1371/journal.pone.0063191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. De Robertis E, De Lores Rodriguez, Arnaiz G, Pellegrino De Iraldi A (1962) Isolation of synaptic vesicles from nerve endings of the rat brain. Nature 194:794–795

    Article  Google Scholar 

  22. Delaidelli A, Jan A, Herms J, Sorensen PH (2019) Translational control in brain pathologies: biological significance and therapeutic opportunities. Acta Neuropathol (Berl) 137:535–555. https://doi.org/10.1007/s00401-019-01971-8

    Article  CAS  Google Scholar 

  23. Di Sano F, Piacentini M (2012) Reticulon protein-1C: a new hope in the treatment of different neuronal diseases. Int J Cell Biol 2012:1–9. https://doi.org/10.1155/2012/651805

    Article  CAS  Google Scholar 

  24. Diao J, Burré J, Vivona S, Cipriano DJ, Sharma M, Kyoung M, Südhof TC, Brunger AT (2013) Native α-synuclein induces clustering of synaptic-vesicle mimics via binding to phospholipids and synaptobrevin-2/VAMP2. eLife. https://doi.org/10.7554/eLife.00592

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dickson DW, Crystal HA, Bevona C, Honer W, Vincent I, Davies P (1995) Correlations of synaptic and pathological markers with cognition of the elderly. Neurobiol Aging 16:285–298. https://doi.org/10.1016/0197-4580(95)00013-5

    Article  CAS  PubMed  Google Scholar 

  26. Dieterich DC, Kreutz MR (2016) Proteomics of the synapse—a quantitative approach to neuronal plasticity. Mol Cell Proteom MCP 15:368–381. https://doi.org/10.1074/mcp.R115.051482

    Article  CAS  Google Scholar 

  27. Emanuele M, Esposito A, Camerini S, Antonucci F, Ferrara S, Seghezza S, Catelani T, Crescenzi M, Marotta R, Canale C, Matteoli M, Menna E, Chieregatti E (2016) Exogenous alpha-synuclein alters pre- and post-synaptic activity by fragmenting lipid rafts. EBioMedicine 7:191–204. https://doi.org/10.1016/j.ebiom.2016.03.038

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fernández E, Collins MO, Uren RT, Kopanitsa MV, Komiyama NH, Croning MDR, Zografos L, Armstrong JD, Choudhary JS, Grant SGN (2009) Targeted tandem affinity purification of PSD-95 recovers core postsynaptic complexes and schizophrenia susceptibility proteins. Mol Syst Biol 5:269. https://doi.org/10.1038/msb.2009.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fortin DL (2004) Lipid rafts mediate the synaptic localization of α-synuclein. J Neurosci 24:6715–6723. https://doi.org/10.1523/JNEUROSCI.1594-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fujimura M, Usuki F, Cheng J, Zhao W (2016) Prenatal low-dose methylmercury exposure impairs neurite outgrowth and synaptic protein expression and suppresses TrkA pathway activity and eEF1A1 expression in the rat cerebellum. Toxicol Appl Pharmacol 298:1–8. https://doi.org/10.1016/j.taap.2016.03.002

    Article  CAS  PubMed  Google Scholar 

  31. Fusco G, Pape T, Stephens AD, Mahou P, Costa AR, Kaminski CF, Kaminski Schierle GS, Vendruscolo M, Veglia G, Dobson CM, De Simone A (2016) Structural basis of synaptic vesicle assembly promoted by α-synuclein. Nat Commun 7:12563. https://doi.org/10.1038/ncomms12563

    Article  PubMed  PubMed Central  Google Scholar 

  32. Garcia-Esparcia P, Hernández-Ortega K, Koneti A, Gil L, Delgado-Morales R, Castaño E, Carmona M, Ferrer I (2015) Altered machinery of protein synthesis is region- and stage-dependent and is associated with α-synuclein oligomers in Parkinson’s disease. Acta Neuropathol Commun 3:76. https://doi.org/10.1186/s40478-015-0257-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Giustetto M, Hegde AN, Si K, Casadio A, Inokuchi K, Pei W, Kandel ER, Schwartz JH (2003) Axonal transport of eukaryotic translation elongation factor 1α mRNA couples transcription in the nucleus to long-term facilitation at the synapse. Proc Natl Acad Sci 100:13680–13685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gray EG, Whittaker VP (1962) The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J Anat 96:79–88

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gross SR, Kinzy TG (2005) Translation elongation factor 1A is essential for regulation of the actin cytoskeleton and cell morphology. Nat Struct Mol Biol 12:772–778. https://doi.org/10.1038/nsmb979

    Article  CAS  PubMed  Google Scholar 

  36. Guardia-Laguarta C, Area-Gomez E, Rub C, Liu Y, Magrane J, Becker D, Voos W, Schon EA, Przedborski S (2014) α-Synuclein is localized to mitochondria-associated ER membranes. J Neurosci 34:249–259. https://doi.org/10.1523/JNEUROSCI.2507-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hafner A-S, Donlin-Asp PG, Leitch B, Herzog E, Schuman EM (2019) Local protein synthesis is a ubiquitous feature of neuronal pre- and postsynaptic compartments. Science. https://doi.org/10.1126/science.aau3644

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hashimoto K, Ishima T (2011) Neurite outgrowth mediated by translation elongation factor eEF1A1: a target for antiplatelet agent cilostazol. PLoS ONE 6:e17431. https://doi.org/10.1371/journal.pone.0017431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Herzog E, Nadrigny F, Silm K, Biesemann C, Helling I, Bersot T, Steffens H, Schwartzmann R, Nagerl UV, El Mestikawy S, Rhee J, Kirchhoff F, Brose N (2011) In vivo imaging of intersynaptic vesicle exchange using VGLUT1Venus knock-in mice. J Neurosci 31:15544–15559. https://doi.org/10.1523/JNEUROSCI.2073-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hosp F, Mann M (2017) A primer on concepts and applications of proteomics in neuroscience. Neuron 96:558–571. https://doi.org/10.1016/j.neuron.2017.09.025

    Article  CAS  PubMed  Google Scholar 

  41. Hu Q, Wang G (2016) Mitochondrial dysfunction in Parkinson’s disease. Transl Neurodegener 5:14. https://doi.org/10.1186/s40035-016-0060-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Huang DW, Sherman BT, Lempicki RA (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57. https://doi.org/10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

  43. Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13. https://doi.org/10.1093/nar/gkn923

    Article  CAS  Google Scholar 

  44. Iketani M, Iizuka A, Sengoku K, Kurihara Y, Nakamura F, Sasaki Y, Sato Y, Yamane M, Matsushita M, Nairn AC, Takamatsu K, Goshima Y, Takei K (2013) Regulation of neurite outgrowth mediated by localized phosphorylation of protein translational factor eEF2 in growth cones. Dev Neurobiol 73:230–246. https://doi.org/10.1002/dneu.22058

    Article  CAS  PubMed  Google Scholar 

  45. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2012) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. Osteoarthr Cartil 20:256–260

    Article  CAS  Google Scholar 

  46. Liu G, Tang J, Edmonds BT, Murray J, Levin S, Condeelis J (1996) F-actin sequesters elongation factor 1alpha from interaction with aminoacyl-tRNA in a pH-dependent reaction. J Cell Biol 135:953–963

    Article  CAS  PubMed  Google Scholar 

  47. Liu G, Wang P, Li X, Li Y, Xu S, Uéda K, Chan P, Yu S (2013) Alpha-synuclein promotes early neurite outgrowth in cultured primary neurons. J Neural Transm 120:1331–1343. https://doi.org/10.1007/s00702-013-0999-8

    Article  CAS  PubMed  Google Scholar 

  48. Logan T, Bendor J, Toupin C, Thorn K, Edwards RH (2017) α-Synuclein promotes dilation of the exocytotic fusion pore. Nat Neurosci 20:681–689. https://doi.org/10.1038/nn.4529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lotharius J, Brundin P (2002) Pathogenesis of Parkinson’s disease: dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci 3:932–942. https://doi.org/10.1038/nrn983

    Article  CAS  PubMed  Google Scholar 

  50. Luquet E, Biesemann C, Munier A, Herzog E (2017) Purification of synaptosome populations using fluorescence-activated synaptosome sorting. Methods Mol Biol Clifton NJ 1538:121–134. https://doi.org/10.1007/978-1-4939-6688-2_10

    Article  CAS  Google Scholar 

  51. Ma T, Trinh MA, Wexler AJ, Bourbon C, Gatti E, Pierre P, Cavener DR, Klann E (2013) Suppression of eIF2α kinases alleviates Alzheimer’s disease-related plasticity and memory deficits. Nat Neurosci 16:1299–1305. https://doi.org/10.1038/nn.3486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Masliah E (2000) Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neurodegenerative disorders. Science 287:1265–1269. https://doi.org/10.1126/science.287.5456.1265

    Article  CAS  PubMed  Google Scholar 

  53. Mateyak MK, Kinzy TG (2010) eEF1A: thinking outside the ribosome. J Biol Chem 285:21209–21213. https://doi.org/10.1074/jbc.R110.113795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McClatchy DB, Fang G, Levey AI (2006) Elongation factor 1A family regulates the recycling of the M4 muscarinic acetylcholine receptor. Neurochem Res 31:975–988. https://doi.org/10.1007/s11064-006-9103-1

    Article  CAS  PubMed  Google Scholar 

  55. McInnes J, Wierda K, Snellinx A, Bounti L, Wang Y-C, Stancu I-C, Apóstolo N, Gevaert K, Dewachter I, Spires-Jones TL, De Strooper B, De Wit J, Zhou L, Verstreken P (2018) Synaptogyrin-3 mediates presynaptic dysfunction induced by Tau. Neuron 97:823–835.e8. https://doi.org/10.1016/j.neuron.2018.01.022

    Article  CAS  PubMed  Google Scholar 

  56. Moreno JA, Radford H, Peretti D, Steinert JR, Verity N, Martin MG, Halliday M, Morgan J, Dinsdale D, Ortori CA, Barrett DA, Tsaytler P, Bertolotti A, Willis AE, Bushell M, Mallucci GR (2012) Sustained translational repression by eIF2α-P mediates prion neurodegeneration. Nature 485:507–511. https://doi.org/10.1038/nature11058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nakamura K, Nemani VM, Azarbal F, Skibinski G, Levy JM, Egami K, Munishkina L, Zhang J, Gardner B, Wakabayashi J, Sesaki H, Cheng Y, Finkbeiner S, Nussbaum RL, Masliah E, Edwards RH (2011) Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein alpha-synuclein. J Biol Chem 286:20710–20726. https://doi.org/10.1074/jbc.M110.213538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nakayama K, Suzuki Y, Yazawa I (2012) Binding of neuronal α-synuclein to β-III tubulin and accumulation in a model of multiple system atrophy. Biochem Biophys Res Commun 417:1170–1175. https://doi.org/10.1016/j.bbrc.2011.12.092

    Article  CAS  PubMed  Google Scholar 

  59. Nemani VM, Lu W, Berge V, Nakamura K, Onoa B, Lee MK, Chaudhry FA, Nicoll RA, Edwards RH (2010) Increased expression of α-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65:66–79. https://doi.org/10.1016/j.neuron.2009.12.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Park J, Park Y, Ryu I, Choi M-H, Lee HJ, Oh N, Kim K, Kim KM, Choe J, Lee C, Baik J-H, Kim YK (2017) Misfolded polypeptides are selectively recognized and transported toward aggresomes by a CED complex. Nat Commun 8:15730. https://doi.org/10.1038/ncomms15730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Petroulakis E, Wang E (2002) Nerve growth factor specifically stimulates translation of eukaryotic elongation factor 1A-1 (eEF1A-1) mRNA by recruitment to polyribosomes in PC12 cells. J Biol Chem 277:18718–18727. https://doi.org/10.1074/jbc.M111782200

    Article  CAS  PubMed  Google Scholar 

  62. Picconi B, Piccoli G, Calabresi P (2012) Synaptic dysfunction in Parkinson’s disease. Adv Exp Med Biol 970:553–572. https://doi.org/10.1007/978-3-7091-0932-8_24

    Article  CAS  PubMed  Google Scholar 

  63. Plotegher N, Kumar D, Tessari I, Brucale M, Munari F, Tosatto L, Belluzzi E, Greggio E, Bisaglia M, Capaldi S, Aioanei D, Mammi S, Monaco HL, Samo B, Bubacco L (2014) The chaperone-like protein 14-3-3η interacts with human α-synuclein aggregation intermediates rerouting the amyloidogenic pathway and reducing α-synuclein cellular toxicity. Hum Mol Genet 23:5615–5629. https://doi.org/10.1093/hmg/ddu275

    Article  CAS  PubMed  Google Scholar 

  64. Prots I, Veber V, Brey S, Campioni S, Buder K, Riek R, Bohm KJ, Winner B (2013) Synuclein oligomers impair neuronal microtubule-kinesin interplay. J Biol Chem 288:21742–21754. https://doi.org/10.1074/jbc.M113.451815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ruest L-B, Marcotte R, Wang E (2002) Peptide elongation factor eEF1A-2/S1 expression in cultured differentiated myotubes and its protective effect against caspase-3-mediated apoptosis. J Biol Chem 277:5418–5425. https://doi.org/10.1074/jbc.M110685200

    Article  CAS  PubMed  Google Scholar 

  66. Schreiner D, Savas JN, Herzog E, Brose N, de Wit J (2017) Synapse biology in the ’circuit-age’-paths toward molecular connectomics. Curr Opin Neurobiol 42:102–110. https://doi.org/10.1016/j.conb.2016.12.004

    Article  CAS  PubMed  Google Scholar 

  67. Scott D, Roy S (2012) α-Synuclein inhibits intersynaptic vesicle mobility and maintains recycling-pool homeostasis. J Neurosci 32:10129–10135. https://doi.org/10.1523/JNEUROSCI.0535-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sharma K, Schmitt S, Bergner CG, Tyanova S, Kannaiyan N, Manrique-Hoyos N, Kongi K, Cantuti L, Hanisch U-K, Philips M-A, Rossner MJ, Mann M, Simons M (2015) Cell type- and brain region-resolved mouse brain proteome. Nat Neurosci 18:1819–1831. https://doi.org/10.1038/nn.4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shigeoka T, Jung H, Jung J, Turner-Bridger B, Ohk J, Lin JQ, Amieux PS, Holt CE (2016) Dynamic axonal translation in developing and mature visual circuits. Cell 166:181–192. https://doi.org/10.1016/j.cell.2016.05.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840. https://doi.org/10.1038/42166

    Article  CAS  PubMed  Google Scholar 

  71. Suzuki Y, Jin C, Iwase T, Yazawa I (2014) III Tubulin fragments inhibit—synuclein accumulation in models of multiple system atrophy. J Biol Chem 289:24374–24382. https://doi.org/10.1074/jbc.M114.557215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Taylor AM, Berchtold NC, Perreau VM, Tu CH, Li Jeon N, Cotman CW (2009) Axonal mRNA in uninjured and regenerating cortical mammalian axons. J Neurosci 29:4697–4707. https://doi.org/10.1523/JNEUROSCI.6130-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580. https://doi.org/10.1002/ana.410300410

    Article  CAS  PubMed  Google Scholar 

  74. Tsokas P, Grace EA, Chan P, Ma T, Sealfon SC, Iyengar R, Landau EM, Blitzer RD (2005) Local protein synthesis mediates a rapid increase in dendritic elongation factor 1A after induction of late long-term potentiation. J Neurosci 25:5833–5843. https://doi.org/10.1523/JNEUROSCI.0599-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vargas KJ, Makani S, Davis T, Westphal CH, Castillo PE, Chandra SS (2014) Synucleins regulate the kinetics of synaptic vesicle endocytosis. J Neurosci 34:9364–9376. https://doi.org/10.1523/JNEUROSCI.4787-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vizcaíno JA, Csordas A, del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez-Riverol Y, Reisinger F, Ternent T, Xu Q-W, Wang R, Hermjakob H (2016) 2016 update of the PRIDE database and its related tools. Nucleic Acids Res 44:D447–D456. https://doi.org/10.1093/nar/gkv1145

    Article  CAS  PubMed  Google Scholar 

  77. Walker L, Stefanis L, Attems J (2019) Clinical and neuropathological differences between Parkinson’s disease, Parkinson’s disease dementia and dementia with Lewy bodies—current issues and future directions. J Neurochem. https://doi.org/10.1111/jnc.14698

    Article  PubMed  Google Scholar 

  78. Wang X, Huang T, Bu G, Xu H (2014) Dysregulation of protein trafficking in neurodegeneration. Mol Neurodegener 9:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Whittaker VP, Michaelson I, Kirkland RJA (1964) The separation of synaptic vesicles from nerve-ending particles (synaptosomes’). Biochem J 90:293

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Wong YC, Krainc D (2017) α-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nat Med 23:1–13. https://doi.org/10.1038/nm.4269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Xu J, Wu X-S, Sheng J, Zhang Z, Yue H-Y, Sun L, Sgobio C, Lin X, Peng S, Jin Y, Gan L, Cai H, Wu L-G (2016) α-Synuclein mutation inhibits endocytosis at mammalian central nerve terminals. J Neurosci 36:4408–4414. https://doi.org/10.1523/JNEUROSCI.3627-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yang F, Demma M, Warren V, Dharmawardhane S, Condeelis J (1990) Identification of an actin-binding protein from dictyostelium as elongation factor 1a. Nature 347:494–496. https://doi.org/10.1038/347494a0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Sarah Hanselka, Katharina Bayer, Michael Schmidt, Dr. Christelle Martin, Melissa Deshors, Dr. Norbert Buresch (Neurobiobank Munich), Dr. Vincent Pitard (Flow cytometry facility, CNRS UMS 3427, INSERM US 005, Univ. Bordeaux), Patrice Mascalchi (Bordeaux Imaging Center, CNRS, INSERM, Univ. Bordeaux) and the Biochemistry and biophysics facility of Bordeaux Neurocampus (CNRS, INSERM, Univ. Bordeaux) for their excellent technical support and animal care. We are also thankful towards Stephan Müller for his expertise in proteomics and advice on our data.

Funding

This work was funded by the Munich Cluster for Systems Neurology SyNergy (EXC1010) to SB, SC and JH; the German Academic Exchange Service (DAAD) to SB; the French Agence Nationale de la Recherche (ANR-12-JSV4-0005-01VGLUT-IQ and ANR-10-LABX-43 BRAIN) to EH; the Fondation pour la Recherche Médicale (ING20150532192) to EH and the CNRS PICS program to EH.

Author information

Authors and Affiliations

Authors

Contributions

SB performed design of the experiment, subcellular fractioning, FASS sorting, validation of results in mouse and human tissue, bioinformatics and interpretation of results and wrote the manuscript. MFA provided expertise and performed subcellular fractioning, FASS sorting and Western blotting with SB. FP performed programming for image analysis. MMD performed bioinformatic analyses. MMD, VCR and TA selected human tissue and provided neuropathological expertise. ML performed EM experiments and EM data analysis. SCl performed mass spectrometry and analysis of the MS raw data. EH performed STED microscopy. SCr and LS provided technical support. VCR, MMD, MFA, EH and JH helped with manuscript preparation. EH and JH supervised the study, contributed to conception, design and manuscript writing and provided financial support and final approval of the manuscript.

Corresponding authors

Correspondence to Etienne Herzog or Jochen Herms.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 50 kb)

Supplementary file2 (DOCX 3644 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blumenstock, S., Angelo, M.F., Peters, F. et al. Early defects in translation elongation factor 1α levels at excitatory synapses in α-synucleinopathy. Acta Neuropathol 138, 971–986 (2019). https://doi.org/10.1007/s00401-019-02063-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-019-02063-3

Keywords

Navigation