Skip to main content
Log in

Psychopathological correlates of the entorhinal cortical shape in schizophrenia

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Animal experiments have shown that early developmental lesions of the entorhinal cortex lead, after a prolonged interval, to an enhanced mesolimbic dopamine release and an increased locomotor activity in rats. Hence, disturbed shape of the entorhinal cortex might indicate maturational abnormalities relevant for psychotic symptoms in schizophrenia. We used an automated surface-based MRI method to perform a region of interest analysis of entorhinal cortical surface area, folding and thickness in 59 patients with schizophrenia and 59 healthy controls. We postulated the entorhinal cortical surface area, folding index, and thickness to be significantly smaller in patients with schizophrenia. Additionally, we expected the complexity of the entorhinal cortical shape to be associated with psychotic symptoms in schizophrenia. Our ROI analysis showed a significant thinner left entorhinal cortex. In addition, our data demonstrate a positive correlation between left entorhinal cortical surface area and folding index and severity of psychotic symptoms. In conclusion, we present new evidence for the involvement of the entorhinal cortex in the pathogenesis of schizophrenia. As cortical folding is a stable neuroanatomical parameter terminated in early neonatal stages, our data give reason to assume that the vulnerability to develop psychotic symptoms might be manifest at an early level of brain maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fyhn M et al (2004) Spatial representation in the entorhinal cortex. Science 305(5688):1258–1264

    Article  CAS  PubMed  Google Scholar 

  2. Meisenzahl EM et al (2009) Differences in hippocampal volume between major depression and schizophrenia: a comparative neuroimaging study. Eur Arch Psychiatry Clin Neurosci

  3. Rametti G et al (2009) Hippocampal underactivation in an fMRI study of word and face memory recognition in schizophrenia. Eur Arch Psychiatry Clin Neurosci 259(4):203–211

    Article  PubMed  Google Scholar 

  4. Jakob H, Beckmann H (1986) Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transm 65(3–4):303–326

    Article  CAS  PubMed  Google Scholar 

  5. Arnold SE et al (1991) Some cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia. Arch Gen Psychiatry 48(7):625–632

    CAS  PubMed  Google Scholar 

  6. Joyal CC et al (2002) A volumetric MRI study of the entorhinal cortex in first episode neuroleptic-naive schizophrenia. Biol Psychiatry 51(12):1005–1007

    Article  PubMed  Google Scholar 

  7. Baiano M et al (2008) Decreased entorhinal cortex volumes in schizophrenia. Schizophr Res 102(1–3):171–180

    Article  PubMed  Google Scholar 

  8. Prasad KM et al (2004) The entorhinal cortex in first-episode psychotic disorders: a structural magnetic resonance imaging study. Am J Psychiatry 161(9):1612–1619

    Article  PubMed  Google Scholar 

  9. Kuperberg GR et al (2003) Regionally localized thinning of the cerebral cortex in schizophrenia. Arch Gen Psychiatry 60(9):878–888

    Article  PubMed  Google Scholar 

  10. Totterdell S, Meredith GE (1997) Topographical organization of projections from the entorhinal cortex to the striatum of the rat. Neuroscience 78(3):715–729

    Article  CAS  PubMed  Google Scholar 

  11. Uehara T et al (2007) Effect of prefrontal cortex inactivation on behavioral and neurochemical abnormalities in rats with excitotoxic lesions of the entorhinal cortex. Synapse 61(6):391–400

    Article  CAS  PubMed  Google Scholar 

  12. Sumiyoshi T et al (2004) Enhanced locomotor activity in rats with excitotoxic lesions of the entorhinal cortex, a neurodevelopmental animal model of schizophrenia: behavioral and in vivo microdialysis studies. Neurosci Lett 364(2):124–129

    Article  CAS  PubMed  Google Scholar 

  13. Abi-Dargham A (2004) Do we still believe in the dopamine hypothesis? New data bring new evidence. Int J Neuropsychopharmacol 7(Suppl 1):S1–S5

    Article  CAS  PubMed  Google Scholar 

  14. Annett M (1967) The binomial distribution of right, mixed and left handedness. Q J Exp Psychol 19(4):327–333

    Article  CAS  PubMed  Google Scholar 

  15. Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 13(2):261–276

    CAS  PubMed  Google Scholar 

  16. Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9(2):195–207

    Article  CAS  PubMed  Google Scholar 

  17. Fischl B et al (1999) High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8(4):272–284

    Article  CAS  PubMed  Google Scholar 

  18. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9(2):179–194

    Article  CAS  PubMed  Google Scholar 

  19. Van Essen DC, Drury HA (1997) Structural and functional analyses of human cerebral cortex using a surface-based atlas. J Neurosci 17(18):7079–7102

    PubMed  Google Scholar 

  20. Desikan RS et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):968–980

    Article  PubMed  Google Scholar 

  21. Woods SW (2003) Chlorpromazine equivalent doses for the newer atypical antipsychotics. J Clin Psychiatry 64(6):663–667

    Article  CAS  PubMed  Google Scholar 

  22. Voets NL et al (2008) Evidence for abnormalities of cortical development in adolescent-onset schizophrenia. Neuroimage 43(4):665–675

    Article  PubMed  Google Scholar 

  23. Goghari VM et al (2007) Sulcal thickness as a vulnerability indicator for schizophrenia. Br J Psychiatry 191:229–233

    Article  PubMed  Google Scholar 

  24. Csernansky JG et al (2008) Symmetric abnormalities in sulcal patterning in schizophrenia. Neuroimage 43(3):440–446

    Article  PubMed  Google Scholar 

  25. Sun D et al (2009) Brain surface contraction mapped in first-episode schizophrenia: a longitudinal magnetic resonance imaging study. Mol Psychiatry 14:976–986

    Article  CAS  PubMed  Google Scholar 

  26. Hilgetag CC, Barbas H (2006) Role of mechanical factors in the morphology of the primate cerebral cortex. PLoS Comput Biol 2(3):e22

    Article  PubMed  CAS  Google Scholar 

  27. Armstrong E et al (1995) The ontogeny of human gyrification. Cereb Cortex 5(1):56–63

    Article  CAS  PubMed  Google Scholar 

  28. McClure RK et al (2006) Regional change in brain morphometry in schizophrenia associated with antipsychotic treatment. Psychiatry Res 148(2–3):121–132

    CAS  PubMed  Google Scholar 

  29. Nesvag R et al (2008) Regional thinning of the cerebral cortex in schizophrenia: effects of diagnosis, age and antipsychotic medication. Schizophr Res 98(1–3):16–28

    Article  PubMed  Google Scholar 

  30. Falkai P, Bogerts B, Rozumek M (1988) Limbic pathology in schizophrenia: the entorhinal region—a morphometric study. Biol Psychiatry 24(5):515–521

    Article  CAS  PubMed  Google Scholar 

  31. Falkai P, Schneider-Axmann T, Honer WG (2000) Entorhinal cortex pre-alpha cell clusters in schizophrenia: quantitative evidence of a developmental abnormality. Biol Psychiatry 47(11):937–943

    Article  CAS  PubMed  Google Scholar 

  32. Beckmann H, Heinsen H (1989) Morphometry of the entorhinal cortex. Biol Psychiatry 25(7):977–979

    Article  CAS  PubMed  Google Scholar 

  33. Kovelman JA, Scheibel AB (1984) A neurohistological correlate of schizophrenia. Biol Psychiatry 19(12):1601–1621

    CAS  PubMed  Google Scholar 

  34. Kovalenko S et al (2003) Regio entorhinalis in schizophrenia: more evidence for migrational disturbances and suggestions for a new biological hypothesis. Pharmacopsychiatry 36(Suppl 3):S158–S161

    PubMed  Google Scholar 

  35. Hilgetag CC, Barbas H (2005) Developmental mechanics of the primate cerebral cortex. Anat Embryol (Berl) 210(5–6):411–417

    Article  Google Scholar 

  36. Van Essen DC (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385(6614):313–318

    Article  PubMed  Google Scholar 

  37. Kalus P et al (2005) New evidence for involvement of the entorhinal region in schizophrenia: a combined MRI volumetric and DTI study. Neuroimage 24(4):1122–1129

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Christoph Schultz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schultz, C.C., Koch, K., Wagner, G. et al. Psychopathological correlates of the entorhinal cortical shape in schizophrenia. Eur Arch Psychiatry Clin Neurosci 260, 351–358 (2010). https://doi.org/10.1007/s00406-009-0083-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-009-0083-4

Keywords

Navigation