Skip to main content

Advertisement

Log in

Relationships between low-grade peripheral inflammation and psychotropic drugs in schizophrenia: results from the national FACE-SZ cohort

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Low-grade inflammation has repeatedly been associated with schizophrenia (SZ) and in particular with cognitive impairment. Female gender, overweight and tobacco smoking have been suggested as risk factors to increase inflammation while preclinical inconsistent findings have been found regarding the association with psychotropic drugs. The aim of this study was to explore if psychotropic drugs were associated with inflammation in SZ and to determine which psychotropic drug was associated with inflammation in stable SZ subjects while considering clinical confounding factors. Participants were consecutively included in the network of the FondaMental Expert Centers for Schizophrenia and received a thorough clinical assessment, including recording of current treatment. High-sensitivity CRP (hs-CRP) was measured for each participant as a proxy to define peripheral low-grade inflammation. The zero-inflated Poisson regression model estimated the relationship between low-grade inflammation and psychotropic drug. Four hundred and five stabilized, community-dwelling SZ subjects (mean age = 32.6 years, 74% male gender) have been included. In total, 148 participants (36.5%) were found with undetectable blood hs-CRP level. The probability of having an undetectable CRP was associated with a lower body mass index (p < 0.0001) and no cyamemazine add-on antipsychotic therapy (p = 0.001). The other 257 participants (63.5%) were found to have low-grade inflammation (hs-CRP > 0 mg/L). Low-grade inflammation was significantly associated with female gender (p = 0.004), higher body mass index (p < 0.0001), current tobacco smoking (p < 0.0001), clomipramine (p = 0.04), quetiapine (p < 0.0001) and hypnotic (p = 0.0006) consumption while decreased hs-CRP blood levels was associated with aripiprazole (p = 0.004) and valproate/valpromide (p = 0.03) consumption. The present study suggests that some psychotropic drugs (quetiapine, cyamemazine, clomipramine) may be associated with increased peripheral low-grade inflammation in SZ patients while others (aripiprazole, valproate) may be associated with decreased peripheral low-grade inflammation. These results should be replicated in SZ and non-SZ populations and the biological underpinnings should be further explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Strawbridge R, Arnone D, Danese A et al (2015) Inflammation and clinical response to treatment in depression: a meta-analysis. Eur Neuropsychopharmacol 25:1532–1543

    Article  PubMed  CAS  Google Scholar 

  2. Valkanova V, Ebmeier KP, Allan CL (2013) CRP, IL-6 and depression: a systematic review and meta-analysis of longitudinal studies. J Affect Disord 150:736–744. https://doi.org/10.1016/j.jad.2013.06.004

    Article  PubMed  CAS  Google Scholar 

  3. Dickerson F, Stallings C, Origoni A et al (2013) Elevated C-reactive protein and cognitive deficits in individuals with bipolar disorder. J Affect Disord 150:456–459

    Article  PubMed  CAS  Google Scholar 

  4. Fond G, d’Albis M-A, Jamain S et al (2015) The promise of biological markers for treatment response in first-episode psychosis: a systematic review. Schizophr Bull 41:559–573. https://doi.org/10.1093/schbul/sbv002

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lopresti AL, Maker GL, Hood SD, Drummond PD (2014) A review of peripheral biomarkers in major depression: the potential of inflammatory and oxidative stress biomarkers. Prog Neuropsychopharmacol Biol Psychiatry 48:102–111. https://doi.org/10.1016/j.pnpbp.2013.09.017

    Article  PubMed  Google Scholar 

  6. Fernandes BS, Steiner J, Bernstein H-G et al (2016) C-reactive protein is increased in schizophrenia but is not altered by antipsychotics: meta-analysis and implications. Mol Psychiatry 21:554–564. https://doi.org/10.1038/mp.2015.87

    Article  PubMed  CAS  Google Scholar 

  7. Inoshita M, Numata S, Tajima A et al (2016) A significant causal association between C-reactive protein levels and schizophrenia. Sci Rep 6:26105. https://doi.org/10.1038/srep26105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bulzacka E, Boyer L, Schürhoff F et al (2016) Chronic peripheral inflammation is associated with cognitive impairment in schizophrenia: results from the multicentric FACE-SZ dataset. Schizophr Bull. https://doi.org/10.1093/schbul/sbw029

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fond G, Hamdani N, Kapczinski F et al (2014) Effectiveness and tolerance of anti-inflammatory drugs’ add-on therapy in major mental disorders: a systematic qualitative review. Acta Psychiatr Scand 129:163–179. https://doi.org/10.1111/acps.12211

    Article  PubMed  CAS  Google Scholar 

  10. Nitta M, Kishimoto T, Müller N et al (2013) Adjunctive use of nonsteroidal anti-inflammatory drugs for schizophrenia: a meta-analytic investigation of randomized controlled trials. Schizophr Bull 39:1230–1241. https://doi.org/10.1093/schbul/sbt070

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sommer IE, van Westrhenen R, Begemann MJ et al (2013) Efficacy of anti-inflammatory agents to improve symptoms in patients with schizophrenia: an update. Schizophr Bull 40:181–191 (sbt139)

    Article  PubMed  PubMed Central  Google Scholar 

  12. Al-Amin MM, Nasir Uddin MM, Mahmud Reza H (2013) Effects of antipsychotics on the inflammatory response system of patients with schizophrenia in peripheral blood mononuclear cell cultures. Clin Psychopharmacol Neurosci 11:144–151. https://doi.org/10.9758/cpn.2013.11.3.144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. da Cruz Jung IE, Machado AK, da Cruz IBM et al (2016) Haloperidol and Risperidone at high concentrations activate an in vitro inflammatory response of RAW 264.7 macrophage cells by induction of apoptosis and modification of cytokine levels. Psychopharmacology 233:1715–1723. https://doi.org/10.1007/s00213-015-4079-7

    Article  PubMed  CAS  Google Scholar 

  14. de Witte L, Tomasik J, Schwarz E et al (2014) Cytokine alterations in first-episode schizophrenia patients before and after antipsychotic treatment. Schizophr Res 154:23–29. https://doi.org/10.1016/j.schres.2014.02.005

    Article  PubMed  Google Scholar 

  15. Handley R, Mondelli V, Zelaya F et al (2016) Effects of antipsychotics on cortisol, interleukin-6 and hippocampal perfusion in healthy volunteers. Schizophr Res. https://doi.org/10.1016/j.schres.2016.03.039

    Article  PubMed  Google Scholar 

  16. Kato T, Monji A, Hashioka S, Kanba S (2007) Risperidone significantly inhibits interferon-gamma-induced microglial activation in vitro. Schizophr Res 92:108–115. https://doi.org/10.1016/j.schres.2007.01.019

    Article  PubMed  Google Scholar 

  17. Lin E-JD, Lee NJ, Slack K et al (2006) Distinct endocrine effects of chronic haloperidol or risperidone administration in male rats. Neuropharmacology 51:1129–1136. https://doi.org/10.1016/j.neuropharm.2006.07.006

    Article  PubMed  CAS  Google Scholar 

  18. Miller BJ, Buckley P, Seabolt W et al (2011) Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry 70:663–671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Morag A, Oved K, Gurwitz D (2013) Sex differences in human lymphoblastoid cells sensitivities to antipsychotic drugs. J Mol Neurosci MN 49:554–558. https://doi.org/10.1007/s12031-012-9852-z

    Article  PubMed  CAS  Google Scholar 

  20. Shin H, Kim J, Song J-H (2015) Clozapine and olanzapine inhibit proton currents in BV2 microglial cells. Eur J Pharmacol 755:74–79. https://doi.org/10.1016/j.ejphar.2015.03.003

    Article  PubMed  CAS  Google Scholar 

  21. Sugino H, Futamura T, Mitsumoto Y et al (2009) Atypical antipsychotics suppress production of proinflammatory cytokines and up-regulate interleukin-10 in lipopolysaccharide-treated mice. Prog Neuropsychopharmacol Biol Psychiatry 33:303–307. https://doi.org/10.1016/j.pnpbp.2008.12.006

    Article  PubMed  CAS  Google Scholar 

  22. Todorović N, Tomanović N, Gass P, Filipović D (2016) Olanzapine modulation of hepatic oxidative stress and inflammation in socially isolated rats. Eur J Pharm Sci 81:94–102. https://doi.org/10.1016/j.ejps.2015.10.010

    Article  PubMed  CAS  Google Scholar 

  23. Valera E, Ubhi K, Mante M et al (2014) Antidepressants reduce neuroinflammatory responses and astroglial alpha-synuclein accumulation in a transgenic mouse model of multiple system atrophy. Glia 62:317–337. https://doi.org/10.1002/glia.22610

    Article  PubMed  Google Scholar 

  24. Zhang XY, Zhou DF, Cao LY et al (2005) Cortisol and cytokines in chronic and treatment-resistant patients with schizophrenia: association with psychopathology and response to antipsychotics. Neuropsychopharmacology 30:1532–1538. https://doi.org/10.1038/sj.npp.1300756

    Article  PubMed  CAS  Google Scholar 

  25. Hannestad J, DellaGioia N, Bloch M (2011) The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis. Neuropsychopharmacology 36:2452–2459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Hiles SA, Baker AL, de Malmanche T, Attia J (2012) Interleukin-6, C-reactive protein and interleukin-10 after antidepressant treatment in people with depression: a meta-analysis. Psychol Med 42:2015–2026. https://doi.org/10.1017/S0033291712000128

    Article  PubMed  CAS  Google Scholar 

  27. Strawbridge R, Arnone D, Danese A et al (2015) Inflammation and clinical response to treatment in depression: a meta-analysis. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol 25:1532–1543. https://doi.org/10.1016/j.euroneuro.2015.06.007

    Article  CAS  Google Scholar 

  28. Fond G, Godin O, Brunel L et al (2016) Peripheral sub-inflammation is associated with antidepressant consumption in schizophrenia. results from the multi-center FACE-SZ data set. J Affect Disord 191:209–215. https://doi.org/10.1016/j.jad.2015.11.017

    Article  PubMed  CAS  Google Scholar 

  29. van den Ameele S, van Diermen L, Staels W et al (2016) The effect of mood-stabilizing drugs on cytokine levels in bipolar disorder: a systematic review. J Affect Disord 203:364–373. https://doi.org/10.1016/j.jad.2016.06.016

    Article  PubMed  CAS  Google Scholar 

  30. Lee S-Y, Chen S-L, Chang Y-H et al (2014) The effects of add-on low-dose memantine on cytokine levels in bipolar II depression: a 12-week double-blind, randomized controlled trial. J Clin Psychopharmacol 34:337–343. https://doi.org/10.1097/JCP.0000000000000109

    Article  PubMed  CAS  Google Scholar 

  31. Maes M, Bosmans E, Calabrese J et al (1995) Interleukin-2 and interleukin-6 in schizophrenia and mania: effects of neuroleptics and mood stabilizers. J Psychiatr Res 29:141–152

    Article  PubMed  CAS  Google Scholar 

  32. El-Mowafy AM, Katary MM, Pye C et al (2016) Novel molecular triggers underlie valproate-induced liver injury and its alleviation by the omega-3 fatty acid DHA: role of inflammation and apoptosis. Heliyon 2:e00130. https://doi.org/10.1016/j.heliyon.2016.e00130

    Article  PubMed  PubMed Central  Google Scholar 

  33. Macritchie K, Geddes JR, Scott J et al (2003) Valproate for acute mood episodes in bipolar disorder. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD004052

    Article  PubMed  Google Scholar 

  34. Yang Y, Kozloski M (2011) Sex differences in age trajectories of physiological dysregulation: inflammation, metabolic syndrome, and allostatic load. J Gerontol A Biol Sci Med Sci 66:493–500. https://doi.org/10.1093/gerona/glr003

    Article  PubMed  Google Scholar 

  35. Miller BJ, Culpepper N, Rapaport MH (2014) C-reactive protein levels in schizophrenia. Clin Schizophr Relat Psychoses 7:223–230

    Article  PubMed  Google Scholar 

  36. MacCallum RC, Zhang S, Preacher KJ, Rucker DD (2002) On the practice of dichotomization of quantitative variables. Psychol Methods 7:19–40

    Article  PubMed  Google Scholar 

  37. Bland JM, Altman DG (1996) Transforming data. BMJ 312:770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Feng C, Wang H, Lu N et al (2014) Log-transformation and its implications for data analysis. Shanghai Arch Psychiatry 26:105–109. https://doi.org/10.3969/j.issn.1002-0829.2014.02.009

    Article  PubMed  PubMed Central  Google Scholar 

  39. Feng C, Wang H, Lu N, Tu XM (2013) Log transformation: application and interpretation in biomedical research. Stat Med 32:230–239. https://doi.org/10.1002/sim.5486

    Article  PubMed  Google Scholar 

  40. Atkins DC, Baldwin SA, Zheng C et al (2013) A tutorial on count regression and zero-altered count models for longitudinal substance use data. Psychol Addict Behav J Soc Psychol Addict Behav 27:166–177. https://doi.org/10.1037/a0029508

    Article  Google Scholar 

  41. Schürhoff F, Fond G, Berna F et al (2015) A National network of schizophrenia expert centres: an innovative tool to bridge the research-practice gap. Eur Psychiatry J Assoc Eur Psychiatr. https://doi.org/10.1016/j.eurpsy.2015.05.004

    Article  Google Scholar 

  42. Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 13:261–276

    Article  PubMed  CAS  Google Scholar 

  43. Min Y, Agresti A (2005) Random effect models for repeated measures of zero-inflated count data. Stat Model 5:1–19. https://doi.org/10.1191/1471082X05st084oa

    Article  Google Scholar 

  44. Fonseka TM, Müller DJ, Kennedy SH (2016) Inflammatory cytokines and antipsychotic-induced weight gain: review and clinical implications. Mol Neuropsychiatry 2:1–14. https://doi.org/10.1159/000441521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Godin O, Leboyer M, Gaman A et al (2015) Metabolic syndrome, abdominal obesity and hyperuricemia in schizophrenia: results from the FACE-SZ cohort. Schizophr Res. https://doi.org/10.1016/j.schres.2015.07.047

    Article  PubMed  Google Scholar 

  46. Kao Y-C, Ko C-Y, Wang S-C, Liu Y-P (2016) Protective effects of quetiapine on metabolic and inflammatory abnormalities in schizophrenic patients during exacerbated stage. Chin J Physiol 59:69–77. https://doi.org/10.4077/CJP.2016.BAE370

    Article  PubMed  CAS  Google Scholar 

  47. Sárvári AK, Veréb Z, Uray IP et al (2014) Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro. Biochem Biophys Res Commun 450:1383–1389. https://doi.org/10.1016/j.bbrc.2014.07.005

    Article  PubMed  CAS  Google Scholar 

  48. Meyer JM, McEvoy JP, Davis VG et al (2009) Inflammatory markers in schizophrenia: comparing antipsychotic effects in phase 1 of the clinical antipsychotic trials of intervention effectiveness study. Biol Psychiatry 66:1013–1022. https://doi.org/10.1016/j.biopsych.2009.06.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Maneeton N, Maneeton B, Woottiluk P et al (2016) Quetiapine monotherapy in acute treatment of generalized anxiety disorder: a systematic review and meta-analysis of randomized controlled trials. Drug Des Dev Ther 10:259–276. https://doi.org/10.2147/DDDT.S89485

    Article  CAS  Google Scholar 

  50. Chassard C, Dapoigny M, Scott KP et al (2012) Functional dysbiosis within the gut microbiota of patients with constipated-irritable bowel syndrome. Aliment Pharmacol Ther 35:828–838. https://doi.org/10.1111/j.1365-2036.2012.05007.x

    Article  PubMed  CAS  Google Scholar 

  51. Zoppi G, Cinquetti M, Luciano A et al (1992) The intestinal ecosystem in chronic functional constipation. Acta Paediatr Oslo Nor 1992 87:836–841

    Google Scholar 

  52. Severance EG, Gressitt KL, Stallings CR et al (2013) Discordant patterns of bacterial translocation markers and implications for innate immune imbalances in schizophrenia. Schizophr Res 148:130–137. https://doi.org/10.1016/j.schres.2013.05.018

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bret P, Bret M-C, Queuille E (2009) Enquête de pratiques de prescription des antipsychotiques dans 13 centres hospitaliers du réseau PIC. L’Encéphale 35:129–138. https://doi.org/10.1016/j.encep.2008.03.007

    Article  PubMed  CAS  Google Scholar 

  54. Stahl SM (1999) Antipsychotic polypharmacy, part 1: therapeutic option or dirty little secret?: (Brainstorms). J Clin Psychiatry 60:425–426. https://doi.org/10.4088/JCP.v60n0701

    Article  PubMed  CAS  Google Scholar 

  55. Irwin MR, Olmstead R, Carroll JE (2016) Sleep disturbance, sleep duration, and inflammation: a systematic review and meta-analysis of cohort studies and experimental sleep deprivation. Biol Psychiatry 80:40–52. https://doi.org/10.1016/j.biopsych.2015.05.014

    Article  PubMed  Google Scholar 

  56. Bambakidis T, Dekker SE, Sillesen M et al (2016) Resuscitation with valproic acid alters inflammatory genes in a porcine model of combined traumatic brain injury and hemorrhagic shock. J Neurotrauma 33:1514–1521. https://doi.org/10.1089/neu.2015.4163

    Article  PubMed  Google Scholar 

  57. Kabel AM, Omar MS, Elmaaboud MAA (2016) Amelioration of bleomycin-induced lung fibrosis in rats by valproic acid and butyrate: role of nuclear factor kappa-B, proinflammatory cytokines and oxidative stress. Int Immunopharmacol 39:335–342. https://doi.org/10.1016/j.intimp.2016.08.008

    Article  PubMed  CAS  Google Scholar 

  58. Leu S-J, Yang Y-Y, Liu H-C et al (2016) Valproic acid and lithium meditate anti-inflammatory effects by differentially modulating dendritic cell differentiation and function. J Cell Physiol. https://doi.org/10.1002/jcp.25604

    Article  PubMed  Google Scholar 

  59. Fond G, Boyer L, Gaman A et al (2015) Treatment with anti-toxoplasmic activity (TATA) for toxoplasma positive patients with bipolar disorders or schizophrenia: a cross-sectional study. J Psychiatr Res 63:58–64. https://doi.org/10.1016/j.jpsychires.2015.02.011

    Article  PubMed  Google Scholar 

  60. Amirzargar MA, Yaghubi F, Hosseinipanah M et al (2017) Anti-inflammatory effects of valproic acid in a rat model of renal ischemia/reperfusion injury: alteration in cytokine profile. Inflammation 40:1310–1318. https://doi.org/10.1007/s10753-017-0574-9

    Article  PubMed  CAS  Google Scholar 

  61. Hoşgörler F, Keleş D, Tanrıverdi-Akhisaroğlu S et al (2016) Anti-inflammatory and anti-apoptotic effect of valproic acid and doxycycline independent from MMP inhibition in early radiation damage. Balk Med J 33:488–495. https://doi.org/10.5152/balkanmedj.2016.151304

    Article  CAS  Google Scholar 

  62. Leu S-J, Yang Y-Y, Liu H-C et al (2017) Valproic acid and lithium meditate anti-inflammatory effects by differentially modulating dendritic cell differentiation and function. J Cell Physiol 232:1176–1186. https://doi.org/10.1002/jcp.25604

    Article  PubMed  CAS  Google Scholar 

  63. Fond G, Macgregor A, Tamouza R et al (2013) Comparative analysis of anti-toxoplasmic activity of antipsychotic drugs and valproate. Eur Arch Psychiatry Clin Neurosci. https://doi.org/10.1007/s00406-013-0413-4

    Article  PubMed  Google Scholar 

  64. Ogundeji AO, Pohl CH, Sebolai OM (2017) The repurposing of anti-psychotic drugs, quetiapine and olanzapine, as anti-cryptococcus drugs. Front Microbiol 8:815. https://doi.org/10.3389/fmicb.2017.00815

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bahramabadi R, Samadi M, Vakilian A et al (2017) Evaluation of the effects of anti-psychotic drugs on the expression of CD68 on the peripheral blood monocytes of Alzheimer patients with psychotic symptoms. Life Sci 179:73–79. https://doi.org/10.1016/j.lfs.2017.04.024

    Article  PubMed  CAS  Google Scholar 

  66. Jaehne EJ, Corrigan F, Toben C et al (2015) The effect of the antipsychotic drug quetiapine and its metabolite norquetiapine on acute inflammation, memory and anhedonia. Pharmacol Biochem Behav 135:136–144. https://doi.org/10.1016/j.pbb.2015.05.021

    Article  PubMed  CAS  Google Scholar 

  67. Haapakoski R, Mathieu J, Ebmeier KP et al (2015) Cumulative meta-analysis of interleukins 6 and 1β, tumour necrosis factor α and C-reactive protein in patients with major depressive disorder. Brain Behav Immun 49:206–215. https://doi.org/10.1016/j.bbi.2015.06.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Dao-Ung P, Skarratt KK, Fuller SJ, Stokes L (2015) Paroxetine suppresses recombinant human P2X7 responses. Purinergic Signal 11:481–490. https://doi.org/10.1007/s11302-015-9467-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Gaydos J, McNally A, Guo R et al (2016) Alcohol abuse and smoking alter inflammatory mediator production by pulmonary and systemic immune cells. Am J Physiol Lung Cell Mol Physiol 310:L507–L518. https://doi.org/10.1152/ajplung.00242.2015

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kim JH, Cho HT, Kim YJ (2014) The role of estrogen in adipose tissue metabolism: insights into glucose homeostasis regulation. Endocr J 61:1055–1067

    Article  PubMed  CAS  Google Scholar 

  71. Li X, Zhang J, Zhu X et al (2015) Progesterone reduces inflammation and apoptosis in neonatal rats with hypoxic ischemic brain damage through the PI3K/Akt pathway. Int J Clin Exp Med 8:8197–8203

    PubMed  PubMed Central  CAS  Google Scholar 

  72. Joseph J, Depp C, Martin AS et al (2015) Associations of high sensitivity C-reactive protein levels in schizophrenia and comparison groups. Schizophr Res 168:456–460. https://doi.org/10.1016/j.schres.2015.08.019

    Article  PubMed  PubMed Central  Google Scholar 

  73. Altamura AC, Bassetti R, Cattaneo E, Vismara S (2005) Some biological correlates of drug resistance in schizophrenia: a multidimensional approach. World J Biol Psychiatry 6(Suppl 2):23–30. https://doi.org/10.1080/15622970510030027

    Article  PubMed  Google Scholar 

  74. Stubbs B, Gardner-Sood P, Smith S et al (2015) Sedentary behaviour is associated with elevated C-reactive protein levels in people with psychosis. Schizophr Res 168:461–464. https://doi.org/10.1016/j.schres.2015.07.003

    Article  PubMed  Google Scholar 

  75. Berk M, Williams LJ, Jacka FN et al (2013) So depression is an inflammatory disease, but where does the inflammation come from? BMC Med 11:200. https://doi.org/10.1186/1741-7015-11-200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The FACE-SZ group: Andrianarisoa Md,l, Aouizerate Ba,l, MD PhD, Berna Fb,l, MD PhD, Blanc Oc,l, Msc, Brunel Ld,l, Msc, Bulzacka Ed,l, Msc, Capdevielle De,l, MD PhD, Chereau-Boudet Ic,l, MD, Chesnoy-Servanin Gf,l, Msc, Danion JMb,l, MD, D’Amato Tf,l, MD PhD, Deloge Ag,l, MD PhD, Delorme Ch,l, Msc, Denizot Hc,l, MD, Dorey JMf,l, MD, Dubertret Ci,l, MD PhD, Dubreucq Jh,l, MD, Faget Cj,l, MD, Fluttaz Ch,l, Msc, Fond Gd,l, MD, Fonteneau Sk,l, Msc, Gabayet Fh,l, Msc, Giraud-Baro Eh,l, MD, Hardy-Bayle MCk,l, MD PhD, Lacelle Dc,l, Msc, Lançon Cj,l, MD PhD, Laouamri Hl, Msc, Leboyer Md,l, MD PhD, Le Gloahec Td,l, Msc, Le Strat Yi,l, MD PhD, Llorcac,l PM, MD PhD, Mallet Ji,l, Metairie Ej,l, Msc, Misdrahi Dg,l, MD, Offerlin-Meyer Ib,l, PhD, Passerieux Ck,l, MD PhD, Peri Pj,l, Msc, Pires Sc,l, Msc, Portalier Ci,l, Msc, Rey Rf,l, MD, Roman Ch,l, Msc, Sebilleau Mk,l, Msc, Schandrin Ae,l, MD, Schürhoff Fd,l, MD PhD, Tessier Ag,l, Msc, Tronche AMc,l, MD, Urbach Mk,l, MD, Vaillant Fj,l, Msc, Vehier Af,l, Msc, Vidailhet Pb,l, MD PhD, Vilain Jd,l, MD, Vilà Eg,l, Msc, Yazbek He,l, PhD, Zinetti-Bertschy Ab,l, Msc.

aCentre Hospitalier Charles Perrens, F-33076 Bordeaux, France; Université de Bordeaux, Inserm, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, F-33000 Bordeaux, France

bHôpitaux Universitaires de Strasbourg, Université de Strasbourg, INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France

cCMP B, CHU, EA 7280 Faculté de Médecine, Université d’Auvergne, BP 69 63003 Clermont-Ferrand Cedex 1

dINSERM U955, équipe de psychiatrie translationnelle, Créteil, France, Université Paris-Est Créteil, DHU Pe-PSY, Pôle de Psychiatrie des Hôpitaux Universitaires H Mondor, Créteil, France

eService Universitaire de Psychiatrie Adulte, Hôpital la Colombière, CHRU Montpellier, Université Montpellier 1, Inserm 1061, Montpellier, France.

fINSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Université Claude Bernard Lyon 1, Equipe PSYR2, Centre Hospitalier Le Vinatier, Pole Est, 95 bd Pinel, BP 30039, 69678 Bron Cedex, France

gCentre Hospitalier Charles Perrens, F-33076 Bordeaux, France; Université de Bordeaux, CNRS UMR 5287-INCIA

hCentre Référent de Réhabilitation Psychosociale, CH Alpes Isère, Grenoble, France

iAP-HP, Department of Psychiatry, Louis Mourier Hospital, Colombes, Inserm U894 Université Paris Diderot, Sorbonne Paris Cité, Faculté de médecine, France

jAssistance Publique des Hôpitaux de Marseille (AP-HM), pôle universitaire de psychiatrie, Marseille, France

kService de psychiatrie d’adulte, Centre Hospitalier de Versailles, Le Chesnay, EA 4047 HANDIReSP, UFR des Sciences de la Santé Simone Veil, Université Versailles Saint-Quentin en Yvelines, Versailles, France

lFondation Fondamental

This work was funded by AP-HP (Assistance Publique des Hôpitaux de Paris), Fondation FondaMental (RTRS Santé Mentale), by the Investissements d’Avenir program managed by the ANR under reference ANR-11-IDEX-0004-02 and ANR-10-COHO-10-01, and by INSERM (Institut National de la Santé et de la Recherche Médicale).

We express all our thanks to the nurses, and to the patients who were included in the present study. We thank Hakim Laouamri, and his team (Stéphane Beaufort, Seif Ben Salem, Karmène Souyris, Victor Barteau and Mohamed Laaidi) for the development of the FACE-SZ computer interface, data management, quality control and regulatory aspects.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to G. Fond.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

The members of the the FACE-SZ (FondaMental Academic Centers of Expertise for Schizophrenia) group are provided in the Acknowledgements section.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fond, G., Resseguier, N., Schürhoff, F. et al. Relationships between low-grade peripheral inflammation and psychotropic drugs in schizophrenia: results from the national FACE-SZ cohort. Eur Arch Psychiatry Clin Neurosci 268, 541–553 (2018). https://doi.org/10.1007/s00406-017-0847-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-017-0847-1

Keywords

Navigation