Skip to main content

Advertisement

Log in

Genetic landscape remodelling in spinocerebellar ataxias: the influence of next-generation sequencing

  • Neurological Update
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Hereditary cerebellar ataxias (HCAs) are clinically and genetically heterogeneous neurodegenerative disorders, characterised by a cerebellar syndrome and other neurological or non-neurological signs. So far, more than 20 genes have been described in autosomal dominant HCA; in autosomal recessive HCA, even more genes are involved, in often more complex phenotypes. Because of that complexity, the genetic diagnosis of these diseases is often based on the next-generation sequencing techniques. In this review paper, we discuss the major contributions that they have made to the genetic landscape of HCAs. Numerous novel genes have been identified; still more have recently been implicated in HCAs in addition to being responsible for other diseases. The phenotypic spectrum associated with a single gene constantly gains in complexity. Novel types of mutations or transmissions in known genes are regularly being identified. All these factors make genotype–phenotype correlations particularly difficult. Some but not all of this variability can be explained by different pathophysiological consequences (loss of function, gain of function, variable levels of haploinsufficiency). This also raises the question of modifier genes. Finally, we highlight some functional pathways that increasingly appear important in HCAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Harding AE (1983) Classification of the hereditary ataxias and paraplegias. Lancet 1(8334):1151–1155 (S0140-6736(83)90673-6)

    Article  CAS  PubMed  Google Scholar 

  2. Anheim M, Tranchant C, Koenig M (2012) The autosomal recessive cerebellar ataxias. N Engl J Med 366(7):636–646. doi:10.1056/NEJMra1006610

    Article  CAS  PubMed  Google Scholar 

  3. Durr A (2010) Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol 9(9):885–894. doi:10.1016/S1474-4422(10)70183-6

    Article  CAS  PubMed  Google Scholar 

  4. Allikmets R, Raskind WH, Hutchinson A, Schueck ND, Dean M, Koeller DM (1999) Mutation of a putative mitochondrial iron transporter gene (ABC7) in X-linked sideroblastic anemia and ataxia (XLSA/A). Hum Mol Genet 8(5):743–749 (ddc101 [pii])

    Article  CAS  PubMed  Google Scholar 

  5. Gilfillan GD, Selmer KK, Roxrud I, Smith R, Kyllerman M, Eiklid K, Kroken M, Mattingsdal M, Egeland T, Stenmark H, Sjoholm H, Server A, Samuelsson L, Christianson A, Tarpey P, Whibley A, Stratton MR, Futreal PA, Teague J, Edkins S, Gecz J, Turner G, Raymond FL, Schwartz C, Stevenson RE, Undlien DE, Stromme P (2008) SLC9A6 mutations cause X-linked mental retardation, microcephaly, epilepsy, and ataxia, a phenotype mimicking Angelman syndrome. Am J Hum Genet 82(4):1003–1010. doi:10.1016/j.ajhg.2008.01.013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Roessler BJ, Golovoy N, Palella TD, Heidler S, Becker MA (1991) Identification of distinct PRS1 mutations in two patients with X-linked phosphoribosylpyrophosphate synthetase superactivity. Adv Exp Med Biol 309B:125–128

    Article  CAS  PubMed  Google Scholar 

  7. Hagerman PJ, Hagerman RJ (2004) The fragile-X premutation: a maturing perspective. Am J Hum Genet 74(5):805–816. doi:10.1086/386296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Nemeth AH, Kwasniewska AC, Lise S, Parolin Schnekenberg R, Becker EB, Bera KD, Shanks ME, Gregory L, Buck D, Zameel Cader M, Talbot K, de Silva R, Fletcher N, Hastings R, Jayawant S, Morrison PJ, Worth P, Taylor M, Tolmie J, O’Regan M, Valentine R, Packham E, Evans J, Seller A, Ragoussis J (2013) Next generation sequencing for molecular diagnosis of neurological disorders using ataxias as a model. Brain 136(Pt 10):3106–3118. doi:10.1093/brain/awt236

    Article  PubMed Central  PubMed  Google Scholar 

  9. Hekman KE, Yu GY, Brown CD, Zhu H, Du X, Gervin K, Undlien DE, Peterson A, Stevanin G, Clark HB, Pulst SM, Bird TD, White KP, Gomez CM (2012) A conserved eEF2 coding variant in SCA26 leads to loss of translational fidelity and increased susceptibility to proteostatic insult. Hum Mol Genet 21(26):5472–5483. doi:10.1093/hmg/dds392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Di Gregorio E, Borroni B, Giorgio E, Lacerenza D, Ferrero M, Lo Buono N, Ragusa N, Mancini C, Gaussen M, Calcia A, Mitro N, Hoxha E, Mura I, Coviello DA, Moon YA, Tesson C, Vaula G, Couarch P, Orsi L, Duregon E, Papotti MG, Deleuze JF, Imbert J, Costanzi C, Padovani A, Giunti P, Maillet-Vioud M, Durr A, Brice A, Tempia F, Funaro A, Boccone L, Caruso D, Stevanin G, Brusco A (2014) ELOVL5 mutations cause spinocerebellar ataxia 38. Am J Hum Genet 95(2):209–217. doi:10.1016/j.ajhg.2014.07.001

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Delplanque J, Devos D, Huin V, Genet A, Sand O, Moreau C, Goizet C, Charles P, Anheim M, Monin ML, Buee L, Destee A, Grolez G, Delmaire C, Dujardin K, Dellacherie D, Brice A, Stevanin G, Strubi-Vuillaume I, Durr A, Sablonniere B (2014) TMEM240 mutations cause spinocerebellar ataxia 21 with mental retardation and severe cognitive impairment. Brain 137(Pt 10):2657–2663. doi:10.1093/brain/awu202

    Article  PubMed  Google Scholar 

  12. Russell JF, Steckley JL, Coppola G, Hahn AF, Howard MA, Kornberg Z, Huang A, Mirsattari SM, Merriman B, Klein E, Choi M, Lee HY, Kirk A, Nelson-Williams C, Gibson G, Baraban SC, Lifton RP, Geschwind DH, Fu YH, Ptacek LJ (2012) Familial cortical myoclonus with a mutation in NOL3. Ann Neurol 72(2):175–183. doi:10.1002/ana.23666

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Shi Y, Wang J, Li JD, Ren H, Guan W, He M, Yan W, Zhou Y, Hu Z, Zhang J, Xiao J, Su Z, Dai M, Jiang H, Guo J, Zhang F, Li N, Du J, Xu Q, Hu Y, Pan Q, Shen L, Wang G, Xia K, Zhang Z, Tang B (2013) Identification of CHIP as a novel causative gene for autosomal recessive cerebellar ataxia. PLoS One 8(12):e81884. doi:10.1371/journal.pone.0081884

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Shi CH, Schisler JC, Rubel CE, Tan S, Song B, McDonough H, Xu L, Portbury AL, Mao CY, True C, Wang RH, Wang QZ, Sun SL, Seminara SB, Patterson C, Xu YM (2014) Ataxia and hypogonadism caused by the loss of ubiquitin ligase activity of the U box protein CHIP. Hum Mol Genet 23(4):1013–1024. doi:10.1093/hmg/ddt497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Synofzik M, Schule R, Schulze M, Gburek-Augustat J, Schweizer R, Schirmacher A, Krageloh-Mann I, Gonzalez M, Young P, Zuchner S, Schols L, Bauer P (2014) Phenotype and frequency of STUB1 mutations: next-generation screenings in Caucasian ataxia and spastic paraplegia cohorts. Orphanet J Rare Dis 9:57. doi:10.1186/1750-1172-9-57

    Article  PubMed Central  PubMed  Google Scholar 

  16. Margolin DH, Kousi M, Chan YM, Lim ET, Schmahmann JD, Hadjivassiliou M, Hall JE, Adam I, Dwyer A, Plummer L, Aldrin SV, O’Rourke J, Kirby A, Lage K, Milunsky A, Milunsky JM, Chan J, Hedley-Whyte ET, Daly MJ, Katsanis N, Seminara SB (2013) Ataxia, dementia, and hypogonadotropism caused by disordered ubiquitination. N Engl J Med 368(21):1992–2003. doi:10.1056/NEJMoa1215993

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Ronnebaum SM, Patterson C, Schisler JC (2014) Emerging evidence of coding mutations in the ubiquitin-proteasome system associated with cerebellar ataxias. Hum Genome Var 1 (14018). doi:10.1038/hgv.2014.18

  18. Bilguvar K, Tyagi NK, Ozkara C, Tuysuz B, Bakircioglu M, Choi M, Delil S, Caglayan AO, Baranoski JF, Erturk O, Yalcinkaya C, Karacorlu M, Dincer A, Johnson MH, Mane S, Chandra SS, Louvi A, Boggon TJ, Lifton RP, Horwich AL, Gunel M (2013) Recessive loss of function of the neuronal ubiquitin hydrolase UCHL1 leads to early-onset progressive neurodegeneration. Proc Natl Acad Sci USA 110(9):3489–3494. doi:10.1073/pnas.1222732110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Conroy J, McGettigan P, Murphy R, Webb D, Murphy SM, McCoy B, Albertyn C, McCreary D, McDonagh C, Walsh O, Lynch S, Ennis S (2014) A novel locus for episodic ataxia:UBR4 the likely candidate. Eur J Hum Genet 22(4):505–510. doi:10.1038/ejhg.2013.173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Mallaret M, Synofzik M, Lee J, Sagum CA, Mahajnah M, Sharkia R, Drouot N, Renaud M, Klein FA, Anheim M, Tranchant C, Mignot C, Mandel JL, Bedford M, Bauer P, Salih MA, Schule R, Schols L, Aldaz CM, Koenig M (2014) The tumour suppressor gene WWOX is mutated in autosomal recessive cerebellar ataxia with epilepsy and mental retardation. Brain 137(Pt 2):411–419. doi:10.1093/brain/awt338

    Article  PubMed Central  PubMed  Google Scholar 

  21. Guissart C, Li X, Leheup B, Drouot N, Montaut-Verient B, Raffo E, Jonveaux P, Roux AF, Claustres M, Fliegel L, Koenig M (2014) Mutation of SLC9A1, encoding the major Na+/H+ exchanger, causes ataxia-deafness Lichtenstein-Knorr syndrome. Hum Mol Genet. doi:10.1093/hmg/ddu461

    PubMed  Google Scholar 

  22. Hills LB, Masri A, Konno K, Kakegawa W, Lam AT, Lim-Melia E, Chandy N, Hill RS, Partlow JN, Al-Saffar M, Nasir R, Stoler JM, Barkovich AJ, Watanabe M, Yuzaki M, Mochida GH (2013) Deletions in GRID2 lead to a recessive syndrome of cerebellar ataxia and tonic upgaze in humans. Neurology 81(16):1378–1386. doi:10.1212/WNL.0b013e3182a841a3

    Article  PubMed Central  PubMed  Google Scholar 

  23. Utine GE, Haliloglu G, Salanci B, Cetinkaya A, Kiper PO, Alanay Y, Aktas D, Boduroglu K, Alikasifoglu M (2013) A homozygous deletion in GRID2 causes a human phenotype with cerebellar ataxia and atrophy. J Child Neurol 28(7):926–932. doi:10.1177/0883073813484967

    Article  PubMed  Google Scholar 

  24. Van Schil K, Meire F, Karlstetter M, Bauwens M, Verdin H, Coppieters F, Scheiffert E, Van Nechel C, Langmann T, Deconinck N, De Baere E (2014) Early-onset autosomal recessive cerebellar ataxia associated with retinal dystrophy: new human hotfoot phenotype caused by homozygous GRID2 deletion. Genet Med. doi:10.1038/gim.2014.95

    Google Scholar 

  25. Coutelier M, Burglen L, Mundwiller E, Abada-Bendib M, Rodriguez D, Chantot-Bastaraud S, Rougeot C, Cournelle M-A, Milh M, Toutain A, Bacq D, Meyer V, Afenjar A, Deleuze J-F, Brice A, Héron D, Stevanin G, Durr A (2015) GRID2 mutations span from congenital to mild adult onset cerebellar ataxia. Neurology 84. doi:10.1212/WNL.0000000000001524

  26. Zuo J, De Jager PL, Takahashi KA, Jiang W, Linden DJ, Heintz N (1997) Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature 388(6644):769–773. doi:10.1038/42009

    Article  CAS  PubMed  Google Scholar 

  27. Szklarczyk R, Wanschers BF, Nijtmans LG, Rodenburg RJ, Zschocke J, Dikow N, van den Brand MA, Hendriks-Franssen MG, Gilissen C, Veltman JA, Nooteboom M, Koopman WJ, Willems PH, Smeitink JA, Huynen MA, van den Heuvel LP (2013) A mutation in the FAM36A gene, the human ortholog of COX20, impairs cytochrome c oxidase assembly and is associated with ataxia and muscle hypotonia. Hum Mol Genet 22(4):656–667. doi:10.1093/hmg/dds473

    Article  CAS  PubMed  Google Scholar 

  28. Doss S, Lohmann K, Seibler P, Arns B, Klopstock T, Zuhlke C, Freimann K, Winkler S, Lohnau T, Drungowski M, Nurnberg P, Wiegers K, Lohmann E, Naz S, Kasten M, Bohner G, Ramirez A, Endres M, Klein C (2014) Recessive dystonia-ataxia syndrome in a Turkish family caused by a COX20 (FAM36A) mutation. J Neurol 261(1):207–212. doi:10.1007/s00415-013-7177-7

    Article  PubMed  Google Scholar 

  29. Bourassa CV, Meijer IA, Merner ND, Grewal KK, Stefanelli MG, Hodgkinson K, Ives EJ, Pryse-Phillips W, Jog M, Boycott K, Grimes DA, Goobie S, Leckey R, Dion PA, Rouleau GA (2012) VAMP1 mutation causes dominant hereditary spastic ataxia in Newfoundland families. Am J Hum Genet 91(3):548–552. doi:10.1016/j.ajhg.2012.07.018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Shen XM, Selcen D, Brengman J, Engel AG (2014) Mutant SNAP25B causes myasthenia, cortical hyperexcitability, ataxia, and intellectual disability. Neurology. doi:10.1212/WNL.0000000000001079

    Google Scholar 

  31. Thomas A, Williams H, Seto-Salvia N, Bacchelli C, Jenkins D, O’Sullivan M, Mengrelis K, Ishida M, Ocaka L, Chanudet E, James C, Lescai F, Anderson G, Morrogh D, Ryten M, Duncan A, Jin Pai Y, Saraiva J, Ramos F, Farren B, Saunders D, Vernay B, Gissen P, Straatman-Iwanowska A, Baas F, Wood N, Hersheson J, Houlden H, Hurst J, Scott R, Bitner-Glinzicz M, Moore G, Sousa S, Stanier P (2014) Mutations in SNX14 cause a distinctive autosomal-recessive cerebellar ataxia and intellectual disability syndrome. Am J Hum Genet 95(5):611–621

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Oefner PJ, Hoffman SM, Lamerdin JE, Mohrenweiser HW, Bulman DE, Ferrari M, Haan J, Lindhout D, van Ommen GJ, Hofker MH, Ferrari MD, Frants RR (1996) Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87(3):543–552 (S0092-8674(00)81373-2 [pii])

    Article  CAS  PubMed  Google Scholar 

  33. Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, Dobyns WB, Subramony SH, Zoghbi HY, Lee CC (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet 15(1):62–69. doi:10.1038/ng0197-62

    Article  CAS  PubMed  Google Scholar 

  34. Jodice C, Mantuano E, Veneziano L, Trettel F, Sabbadini G, Calandriello L, Francia A, Spadaro M, Pierelli F, Salvi F, Ophoff RA, Frants RR, Frontali M (1997) Episodic ataxia type 2 (EA2) and spinocerebellar ataxia type 6 (SCA6) due to CAG repeat expansion in the CACNA1A gene on chromosome 19p. Hum Mol Genet 6(11):1973–1978 (dda250 [pii])

    Article  CAS  PubMed  Google Scholar 

  35. Yue Q, Jen JC, Nelson SF, Baloh RW (1997) Progressive ataxia due to a missense mutation in a calcium-channel gene. Am J Hum Genet 61(5):1078–1087. doi:10.1086/301613

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Duarri A, Jezierska J, Fokkens M, Meijer M, Schelhaas HJ, den Dunnen WF, van Dijk F, Verschuuren-Bemelmans C, Hageman G, van de Vlies P, Kusters B, van de Warrenburg BP, Kremer B, Wijmenga C, Sinke RJ, Swertz MA, Kampinga HH, Boddeke E, Verbeek DS (2012) Mutations in potassium channel kcnd3 cause spinocerebellar ataxia type 19. Ann Neurol 72(6):870–880. doi:10.1002/ana.23700

    Article  CAS  PubMed  Google Scholar 

  37. Lee YC, Durr A, Majczenko K, Huang YH, Liu YC, Lien CC, Tsai PC, Ichikawa Y, Goto J, Monin ML, Li JZ, Chung MY, Mundwiller E, Shakkottai V, Liu TT, Tesson C, Lu YC, Brice A, Tsuji S, Burmeister M, Stevanin G, Soong BW (2012) Mutations in KCND3 cause spinocerebellar ataxia type 22. Ann Neurol 72(6):859–869. doi:10.1002/ana.23701

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Meneret A, Ahmar-Beaugendre Y, Rieunier G, Mahlaoui N, Gaymard B, Apartis E, Tranchant C, Rivaud-Pechoux S, Degos B, Benyahia B, Suarez F, Maisonobe T, Koenig M, Durr A, Stern MH, Dubois d’Enghien C, Fischer A, Vidailhet M, Stoppa-Lyonnet D, Grabli D, Anheim M (2014) The pleiotropic movement disorders phenotype of adult ataxia-telangiectasia. Neurology 83(12):1087–1095. doi:10.1212/WNL.0000000000000794

    Article  PubMed  Google Scholar 

  39. Pan LL, Huang YM, Wang M, Zhuang XE, Luo DF, Guo SC, Zhang ZS, Huang Q, Lin SL, Wang SY (2014) Positional cloning and next-generation sequencing identified a TGM6 mutation in a large Chinese pedigree with acute myeloid leukaemia. Eur J Hum Genet. doi:10.1038/ejhg.2014.67

    PubMed Central  Google Scholar 

  40. Sun Y, Almomani R, Breedveld GJ, Santen GW, Aten E, Lefeber DJ, Hoff JI, Brusse E, Verheijen FW, Verdijk RM, Kriek M, Oostra B, Breuning MH, Losekoot M, den Dunnen JT, van de Warrenburg BP, Maat-Kievit AJ (2013) Autosomal recessive spinocerebellar ataxia 7 (SCAR7) is caused by variants in TPP1, the gene involved in classic late-infantile neuronal ceroid lipofuscinosis 2 disease (CLN2 disease). Hum Mutat 34(5):706–713. doi:10.1002/humu.22292

    Article  CAS  PubMed  Google Scholar 

  41. Mancini C, Nassani S, Guo Y, Chen Y, Giorgio E, Brussino A, Di Gregorio E, Cavalieri S, Lo Buono N, Funaro A, Pizio NR, Nmezi B, Kyttala A, Santorelli FM, Padiath QS, Hakonarson H, Zhang H, Brusco A (2014) Adult-onset autosomal recessive ataxia associated with neuronal ceroid lipofuscinosis type 5 gene (CLN5) mutations. J Neurol. doi:10.1007/s00415-014-7553-y

    PubMed  Google Scholar 

  42. Synofzik M, Gonzalez MA, Lourenco CM, Coutelier M, Haack TB, Rebelo A, Hannequin D, Strom TM, Prokisch H, Kernstock C, Durr A, Schols L, Lima-Martinez MM, Farooq A, Schule R, Stevanin G, Marques W Jr, Zuchner S (2014) PNPLA6 mutations cause Boucher-Neuhauser and Gordon Holmes syndromes as part of a broad neurodegenerative spectrum. Brain 137(Pt 1):69–77. doi:10.1093/brain/awt326

    Article  PubMed Central  PubMed  Google Scholar 

  43. Hufnagel RB, Arno G, Hein ND, Hersheson J, Prasad M, Anderson Y, Krueger LA, Gregory LC, Stoetzel C, Jaworek TJ, Hull S, Li A, Plagnol V, Willen CM, Morgan TM, Prows CA, Hegde RS, Riazuddin S, Grabowski GA, Richardson RJ, Dieterich K, Huang T, Revesz T, Martinez-Barbera JP, Sisk RA, Jefferies C, Houlden H, Dattani MT, Fink JK, Dollfus H, Moore AT, Ahmed ZM (2014) Neuropathy target esterase impairments cause Oliver-McFarlane and Laurence-Moon syndromes. J Med Genet. doi:10.1136/jmedgenet-2014-102856

    PubMed  Google Scholar 

  44. Renaud M, Anheim M, Kamsteeg EJ, Mallaret M, Mochel F, Vermeer S, Drouot N, Pouget J, Redin C, Salort-Campana E, Kremer HP, Verschuuren-Bemelmans CC, Muller J, Scheffer H, Durr A, Tranchant C, Koenig M (2014) Autosomal recessive cerebellar ataxia type 3 due to ANO10 mutations: delineation and genotype–phenotype correlation study. JAMA Neurol 71(10):1305–1310. doi:10.1001/jamaneurol.2014.193

    Article  PubMed  Google Scholar 

  45. Salih MA, Mundwiller E, Khan AO, AlDrees A, Elmalik SA, Hassan HH, Al-Owain M, Alkhalidi HM, Katona I, Kabiraj MM, Chrast R, Kentab AY, Alzaidan H, Rodenburg RJ, Bosley TM, Weis J, Koenig M, Stevanin G, Azzedine H (2013) New findings in a global approach to dissect the whole phenotype of PLA2G6 gene mutations. PLoS One 8(10):e76831. doi:10.1371/journal.pone.0076831

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Hara K, Shiga A, Nozaki H, Mitsui J, Takahashi Y, Ishiguro H, Yomono H, Kurisaki H, Goto J, Ikeuchi T, Tsuji S, Nishizawa M, Onodera O (2008) Total deletion and a missense mutation of ITPR1 in Japanese SCA15 families. Neurology 71(8):547–551. doi:10.1212/01.wnl.0000311277.71046.a0

    Article  CAS  PubMed  Google Scholar 

  47. Huang L, Chardon JW, Carter MT, Friend KL, Dudding TE, Schwartzentruber J, Zou R, Schofield PW, Douglas S, Bulman DE, Boycott KM (2012) Missense mutations in ITPR1 cause autosomal dominant congenital nonprogressive spinocerebellar ataxia. Orphanet J Rare Dis 7:67. doi:10.1186/1750-1172-7-67

    Article  PubMed Central  PubMed  Google Scholar 

  48. Ohba C, Osaka H, Iai M, Yamashita S, Suzuki Y, Aida N, Shimozawa N, Takamura A, Doi H, Tomita-Katsumoto A, Nishiyama K, Tsurusaki Y, Nakashima M, Miyake N, Eto Y, Tanaka F, Matsumoto N, Saitsu H (2013) Diagnostic utility of whole exome sequencing in patients showing cerebellar and/or vermis atrophy in childhood. Neurogenetics 14(3–4):225–232. doi:10.1007/s10048-013-0375-8

    Article  CAS  PubMed  Google Scholar 

  49. Di Bella D, Lazzaro F, Brusco A, Plumari M, Battaglia G, Pastore A, Finardi A, Cagnoli C, Tempia F, Frontali M, Veneziano L, Sacco T, Boda E, Brussino A, Bonn F, Castellotti B, Baratta S, Mariotti C, Gellera C, Fracasso V, Magri S, Langer T, Plevani P, Di Donato S, Muzi-Falconi M, Taroni F (2010) Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28. Nat Genet 42(4):313–321. doi:10.1038/ng.544

    Article  PubMed  CAS  Google Scholar 

  50. Smets K, Deconinck T, Baets J, Sieben A, Martin JJ, Smouts I, Wang S, Taroni F, Di Bella D, Van Hecke W, Parizel PM, Jadoul C, De Potter R, Couvreur F, Rugarli E, De Jonghe P (2014) Partial deletion of AFG3L2 causing spinocerebellar ataxia type 28. Neurology 82(23):2092–2100. doi:10.1212/WNL.0000000000000491

    Article  CAS  PubMed  Google Scholar 

  51. Myers KA, Warman Chardon J, Huang L, Boycott KM (2014) Deletion of AFG3L2 associated with spinocerebellar ataxia type 28 in the context of multiple genomic anomalies. Am J Med Genet A. doi:10.1002/ajmg.a.36771

    Google Scholar 

  52. Musova Z, Kaiserova M, Kriegova E, Fillerova R, Vasovcak P, Santava A, Mensikova K, Zumrova A, Krepelova A, Sedlacek Z, Kanovsky P (2014) A novel frameshift mutation in the AFG3L2 gene in a patient with spinocerebellar ataxia. Cerebellum 13(3):331–337. doi:10.1007/s12311-013-0538-z

    Article  PubMed  Google Scholar 

  53. Pierson TM, Adams D, Bonn F, Martinelli P, Cherukuri PF, Teer JK, Hansen NF, Cruz P, Mullikin For The Nisc Comparative Sequencing Program JC, Blakesley RW, Golas G, Kwan J, Sandler A, Fuentes Fajardo K, Markello T, Tifft C, Blackstone C, Rugarli EI, Langer T, Gahl WA, Toro C (2011) Whole-exome sequencing identifies homozygous AFG3L2 mutations in a spastic ataxia-neuropathy syndrome linked to mitochondrial m-AAA proteases. PLoS Genet 7(10):e1002325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Lise S, Clarkson Y, Perkins E, Kwasniewska A, Sadighi Akha E, Schnekenberg RP, Suminaite D, Hope J, Baker I, Gregory L, Green A, Allan C, Lamble S, Jayawant S, Quaghebeur G, Cader MZ, Hughes S, Armstrong RJ, Kanapin A, Rimmer A, Lunter G, Mathieson I, Cazier JB, Buck D, Taylor JC, Bentley D, McVean G, Donnelly P, Knight SJ, Jackson M, Ragoussis J, Nemeth AH (2012) Recessive mutations in SPTBN2 implicate beta-III spectrin in both cognitive and motor development. PLoS Genet 8(12):e1003074. doi:10.1371/journal.pgen.1003074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Elsayed SM, Heller R, Thoenes M, Zaki MS, Swan D, Elsobky E, Zuhlke C, Ebermann I, Nurnberg G, Nurnberg P, Bolz HJ (2014) Autosomal dominant SCA5 and autosomal recessive infantile SCA are allelic conditions resulting from SPTBN2 mutations. Eur J Hum Genet 22(2):286–288. doi:10.1038/ejhg.2013.150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Stevanin G, Durr A, Brice A (2000) Clinical and molecular advances in autosomal dominant cerebellar ataxias: from genotype to phenotype and physiopathology. Eur J Hum Genet 8(1):4–18. doi:10.1038/sj.ejhg.5200403

    Article  CAS  PubMed  Google Scholar 

  57. Tezenas du Montcel S, Durr A, Bauer P, Figueroa KP, Ichikawa Y, Brussino A, Forlani S, Rakowicz M, Schols L, Mariotti C, van de Warrenburg BP, Orsi L, Giunti P, Filla A, Szymanski S, Klockgether T, Berciano J, Pandolfo M, Boesch S, Melegh B, Timmann D, Mandich P, Camuzat A, Goto J, Ashizawa T, Cazeneuve C, Tsuji S, Pulst SM, Brusco A, Riess O, Brice A, Stevanin G (2014) Modulation of the age at onset in spinocerebellar ataxia by CAG tracts in various genes. Brain 137(Pt 9):2444–2455. doi:10.1093/brain/awu174

    Article  PubMed Central  PubMed  Google Scholar 

  58. Lattante S, Millecamps S, Stevanin G, Rivaud-Pechoux S, Moigneu C, Camuzat A, Da Barroca S, Mundwiller E, Couarch P, Salachas F, Hannequin D, Meininger V, Pasquier F, Seilhean D, Couratier P, Danel-Brunaud V, Bonnet AM, Tranchant C, LeGuern E, Brice A, Le Ber I, Kabashi E (2014) Contribution of ATXN2 intermediary polyQ expansions in a spectrum of neurodegenerative disorders. Neurology 83(11):990–995. doi:10.1212/WNL.0000000000000778

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Yamashita C, Tomiyama H, Funayama M, Inamizu S, Ando M, Li Y, Yoshino H, Araki T, Ichikawa T, Ehara Y, Ishikawa K, Mizusawa H, Hattori N (2014) The evaluation of polyglutamine repeats in autosomal dominant Parkinson’s disease. Neurobiol Aging 35 (7):1779 e1717-1721. doi:10.1016/j.neurobiolaging.2014.01.022

  60. Bonifert T, Karle KN, Tonagel F, Batra M, Wilhelm C, Theurer Y, Schoenfeld C, Kluba T, Kamenisch Y, Carelli V, Wolf J, Gonzalez MA, Speziani F, Schule R, Zuchner S, Schols L, Wissinger B, Synofzik M (2014) Pure and syndromic optic atrophy explained by deep intronic OPA1 mutations and an intralocus modifier. Brain 137(Pt 8):2164–2177. doi:10.1093/brain/awu165

    Article  PubMed Central  PubMed  Google Scholar 

  61. Matilla-Duenas A, Ashizawa T, Brice A, Magri S, McFarland KN, Pandolfo M, Pulst SM, Riess O, Rubinsztein DC, Schmidt J, Schmidt T, Scoles DR, Stevanin G, Taroni F, Underwood BR, Sanchez I (2014) Consensus paper: pathological mechanisms underlying neurodegeneration in spinocerebellar ataxias. Cerebellum 13(2):269–302. doi:10.1007/s12311-013-0539-y

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Alves S, Cormier-Dequaire F, Marinello M, Marais T, Muriel MP, Beaumatin F, Charbonnier-Beaupel F, Tahiri K, Seilhean D, El Hachimi K, Ruberg M, Stevanin G, Barkats M, den Dunnen W, Priault M, Brice A, Durr A, Corvol JC, Sittler A (2014) The autophagy/lysosome pathway is impaired in SCA7 patients and SCA7 knock-in mice. Acta Neuropathol 128(5):705–722. doi:10.1007/s00401-014-1289-8

    Article  CAS  PubMed  Google Scholar 

  63. Frontali M (2001) Spinocerebellar ataxia type 6: channelopathy or glutamine repeat disorder? Brain Res Bull 56(3–4):227–231 (S0361-9230(01)00574-3 [pii])

    Article  CAS  PubMed  Google Scholar 

  64. Rajakulendran S, Kaski D, Hanna MG (2012) Neuronal P/Q-type calcium channel dysfunction in inherited disorders of the CNS. Nat Rev Neurol 8(2):86–96. doi:10.1038/nrneurol.2011.228

    Article  CAS  PubMed  Google Scholar 

  65. Walter JT, Alvina K, Womack MD, Chevez C, Khodakhah K (2006) Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nat Neurosci 9(3):389–397. doi:10.1038/nn1648

    Article  CAS  PubMed  Google Scholar 

  66. Stahl JS, Thumser ZC (2014) Flocculus Purkinje cell signals in mouse Cacna1a calcium channel mutants of escalating severity: an investigation of the role of firing irregularity in ataxia. J Neurophysiol. doi:10.1152/jn.00129.2014

    PubMed  PubMed Central  Google Scholar 

  67. Du X, Wang J, Zhu H, Rinaldo L, Lamar KM, Palmenberg AC, Hansel C, Gomez CM (2013) Second cistron in CACNA1A gene encodes a transcription factor mediating cerebellar development and SCA6. Cell 154(1):118–133. doi:10.1016/j.cell.2013.05.059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Waters MF, Minassian NA, Stevanin G, Figueroa KP, Bannister JP, Nolte D, Mock AF, Evidente VG, Fee DB, Muller U, Durr A, Brice A, Papazian DM, Pulst SM (2006) Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes. Nat Genet 38(4):447–451. doi:10.1038/ng1758

    Article  CAS  PubMed  Google Scholar 

  69. Zhao J, Zhu J, Thornhill WB (2013) Spinocerebellar ataxia-13 Kv3.3 potassium channels: arginine-to-histidine mutations affect both functional and protein expression on the cell surface. Biochem J 454(2):259–265. doi:10.1042/BJ20130034

    Article  CAS  PubMed  Google Scholar 

  70. Gallego-Iradi C, Bickford JS, Khare S, Hall A, Nick JA, Salmasinia D, Wawrowsky K, Bannykh S, Huynh DP, Rincon-Limas DE, Pulst SM, Nick HS, Fernandez-Funez P, Waters MF (2014) KCNC3(R420H), a K(+) channel mutation causative in spinocerebellar ataxia 13 displays aberrant intracellular trafficking. Neurobiol Dis 71:270–279. doi:10.1016/j.nbd.2014.08.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. van Swieten JC, Brusse E, de Graaf BM, Krieger E, van de Graaf R, de Koning I, Maat-Kievit A, Leegwater P, Dooijes D, Oostra BA, Heutink P (2003) A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebellar ataxia [corrected]. Am J Hum Genet 72(1):191–199 (S0002-9297(07)60518-7 [pii])

    Article  PubMed Central  PubMed  Google Scholar 

  72. Laezza F, Gerber BR, Lou JY, Kozel MA, Hartman H, Craig AM, Ornitz DM, Nerbonne JM (2007) The FGF14(F145S) mutation disrupts the interaction of FGF14 with voltage-gated Na+ channels and impairs neuronal excitability. J Neurosci 27(44):12033–12044. doi:10.1523/JNEUROSCI.2282-07.2007

    Article  CAS  PubMed  Google Scholar 

  73. Shakkottai VG, Xiao M, Xu L, Wong M, Nerbonne JM, Ornitz DM, Yamada KA (2009) FGF14 regulates the intrinsic excitability of cerebellar Purkinje neurons. Neurobiol Dis 33(1):81–88. doi:10.1016/j.nbd.2008.09.019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Yan H, Pablo JL, Pitt GS (2013) FGF14 regulates presynaptic Ca2+ channels and synaptic transmission. Cell Rep 4(1):66–75. doi:10.1016/j.celrep.2013.06.012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Ghezzi D, Arzuffi P, Zordan M, Da Re C, Lamperti C, Benna C, D’Adamo P, Diodato D, Costa R, Mariotti C, Uziel G, Smiderle C, Zeviani M (2011) Mutations in TTC19 cause mitochondrial complex III deficiency and neurological impairment in humans and flies. Nat Genet 43(3):259–263. doi:10.1038/ng.761

    Article  CAS  PubMed  Google Scholar 

  76. Koppen M, Langer T (2007) Protein degradation within mitochondria: versatile activities of AAA proteases and other peptidases. Crit Rev Biochem Mol Biol 42(3):221–242. doi:10.1080/10409230701380452

    Article  CAS  PubMed  Google Scholar 

  77. Maltecca F, De Stefani D, Cassina L, Consolato F, Wasilewski M, Scorrano L, Rizzuto R, Casari G (2012) Respiratory dysfunction by AFG3L2 deficiency causes decreased mitochondrial calcium uptake via organellar network fragmentation. Hum Mol Genet 21(17):3858–3870. doi:10.1093/hmg/dds214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Almajan ER, Richter R, Paeger L, Martinelli P, Barth E, Decker T, Larsson NG, Kloppenburg P, Langer T, Rugarli EI (2012) AFG3L2 supports mitochondrial protein synthesis and Purkinje cell survival. J Clin Invest 122(11):4048–4058. doi:10.1172/JCI64604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Kondadi AK, Wang S, Montagner S, Kladt N, Korwitz A, Martinelli P, Herholz D, Baker MJ, Schauss AC, Langer T, Rugarli EI (2014) Loss of the m-AAA protease subunit AFG(3)L(2) causes mitochondrial transport defects and tau hyperphosphorylation. EMBO J 33(9):1011–1026. doi:10.1002/embj.201387009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Wedding IM, Koht J, Tran GT, Misceo D, Selmer KK, Holmgren A, Frengen E, Bindoff L, Tallaksen CM, Tzoulis C (2014) Spastic paraplegia type 7 is associated with multiple mitochondrial DNA deletions. PLoS One 9(1):e86340. doi:10.1371/journal.pone.0086340

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  81. Klebe S, Depienne C, Gerber S, Challe G, Anheim M, Charles P, Fedirko E, Lejeune E, Cottineau J, Brusco A, Dollfus H, Chinnery PF, Mancini C, Ferrer X, Sole G, Destee A, Mayer JM, Fontaine B, de Seze J, Clanet M, Ollagnon E, Busson P, Cazeneuve C, Stevanin G, Kaplan J, Rozet JM, Brice A, Durr A (2012) Spastic paraplegia gene 7 in patients with spasticity and/or optic neuropathy. Brain 135(Pt 10):2980–2993. doi:10.1093/brain/aws240

    Article  PubMed Central  PubMed  Google Scholar 

  82. Nelson RF, Glenn KA, Miller VM, Wen H, Paulson HL (2006) A novel route for F-box protein-mediated ubiquitination links CHIP to glycoprotein quality control. J Biol Chem 281(29):20242–20251. doi:10.1074/jbc.M602423200

    Article  CAS  PubMed  Google Scholar 

  83. Ikeda Y, Dick KA, Weatherspoon MR, Gincel D, Armbrust KR, Dalton JC, Stevanin G, Durr A, Zuhlke C, Burk K, Clark HB, Brice A, Rothstein JD, Schut LJ, Day JW, Ranum LP (2006) Spectrin mutations cause spinocerebellar ataxia type 5. Nat Genet 38(2):184–190. doi:10.1038/ng1728

    Article  CAS  PubMed  Google Scholar 

  84. Bakalkin G, Watanabe H, Jezierska J, Depoorter C, Verschuuren-Bemelmans C, Bazov I, Artemenko KA, Yakovleva T, Dooijes D, Van de Warrenburg BP, Zubarev RA, Kremer B, Knapp PE, Hauser KF, Wijmenga C, Nyberg F, Sinke RJ, Verbeek DS (2010) Prodynorphin mutations cause the neurodegenerative disorder spinocerebellar ataxia type 23. Am J Hum Genet 87(5):593–603. doi:10.1016/j.ajhg.2010.10.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Lin X, Antalffy B, Kang D, Orr HT, Zoghbi HY (2000) Polyglutamine expansion down-regulates specific neuronal genes before pathologic changes in SCA1. Nat Neurosci 3(2):157–163. doi:10.1038/72101

    Article  CAS  PubMed  Google Scholar 

  86. Armbrust KR, Wang X, Hathorn TJ, Cramer SW, Chen G, Zu T, Kangas T, Zink AN, Oz G, Ebner TJ, Ranum LP (2014) Mutant beta-III spectrin causes mGluR1alpha mislocalization and functional deficits in a mouse model of spinocerebellar ataxia type 5. J Neurosci 34(30):9891–9904. doi:10.1523/JNEUROSCI.0876-14.2014

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  87. Kato AS, Knierman MD, Siuda ER, Isaac JT, Nisenbaum ES, Bredt DS (2012) Glutamate receptor delta2 associates with metabotropic glutamate receptor 1 (mGluR1), protein kinase Cgamma, and canonical transient receptor potential 3 and regulates mGluR1-mediated synaptic transmission in cerebellar Purkinje neurons. J Neurosci 32(44):15296–15308. doi:10.1523/JNEUROSCI.0705-12.2012

    Article  CAS  PubMed  Google Scholar 

  88. Schuurs-Hoeijmakers JH, Geraghty MT, Kamsteeg EJ, Ben-Salem S, de Bot ST, Nijhof B, van de Vondervoort II, van der Graaf M, Nobau AC, Otte-Holler I, Vermeer S, Smith AC, Humphreys P, Schwartzentruber J, Ali BR, Al-Yahyaee SA, Tariq S, Pramathan T, Bayoumi R, Kremer HP, van de Warrenburg BP, van den Akker WM, Gilissen C, Veltman JA, Janssen IM, Vulto-van Silfhout AT, van der Velde-Visser S, Lefeber DJ, Diekstra A, Erasmus CE, Willemsen MA, Vissers LE, Lammens M, van Bokhoven H, Brunner HG, Wevers RA, Schenck A, Al-Gazali L, de Vries BB, de Brouwer AP (2012) Mutations in DDHD2, encoding an intracellular phospholipase A(1), cause a recessive form of complex hereditary spastic paraplegia. Am J Hum Genet 91(6):1073–1081. doi:10.1016/j.ajhg.2012.10.017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Tesson C, Nawara M, Salih MA, Rossignol R, Zaki MS, Al Balwi M, Schule R, Mignot C, Obre E, Bouhouche A, Santorelli FM, Durand CM, Oteyza AC, El-Hachimi KH, Al Drees A, Bouslam N, Lamari F, Elmalik SA, Kabiraj MM, Seidahmed MZ, Esteves T, Gaussen M, Monin ML, Gyapay G, Lechner D, Gonzalez M, Depienne C, Mochel F, Lavie J, Schols L, Lacombe D, Yahyaoui M, Al Abdulkareem I, Zuchner S, Yamashita A, Benomar A, Goizet C, Durr A, Gleeson JG, Darios F, Brice A, Stevanin G (2012) Alteration of fatty-acid-metabolizing enzymes affects mitochondrial form and function in hereditary spastic paraplegia. Am J Hum Genet 91(6):1051–1064. doi:10.1016/j.ajhg.2012.11.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Boukhris A, Schule R, Loureiro JL, Lourenco CM, Mundwiller E, Gonzalez MA, Charles P, Gauthier J, Rekik I, Acosta Lebrigio RF, Gaussen M, Speziani F, Ferbert A, Feki I, Caballero-Oteyza A, Dionne-Laporte A, Amri M, Noreau A, Forlani S, Cruz VT, Mochel F, Coutinho P, Dion P, Mhiri C, Schols L, Pouget J, Darios F, Rouleau GA, Marques W Jr, Brice A, Durr A, Zuchner S, Stevanin G (2013) Alteration of ganglioside biosynthesis responsible for complex hereditary spastic paraplegia. Am J Hum Genet 93(1):118–123. doi:10.1016/j.ajhg.2013.05.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Martin E, Schule R, Smets K, Rastetter A, Boukhris A, Loureiro JL, Gonzalez MA, Mundwiller E, Deconinck T, Wessner M, Jornea L, Oteyza AC, Durr A, Martin JJ, Schols L, Mhiri C, Lamari F, Zuchner S, De Jonghe P, Kabashi E, Brice A, Stevanin G (2013) Loss of function of glucocerebrosidase GBA2 is responsible for motor neuron defects in hereditary spastic paraplegia. Am J Hum Genet 92(2):238–244. doi:10.1016/j.ajhg.2012.11.021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Walden CM, Sandhoff R, Chuang CC, Yildiz Y, Butters TD, Dwek RA, Platt FM, van der Spoel AC (2007) Accumulation of glucosylceramide in murine testis, caused by inhibition of beta-glucosidase 2: implications for spermatogenesis. J Biol Chem 282(45):32655–32664. doi:10.1074/jbc.M702387200

    Article  CAS  PubMed  Google Scholar 

  93. Rainier S, Bui M, Mark E, Thomas D, Tokarz D, Ming L, Delaney C, Richardson RJ, Albers JW, Matsunami N, Stevens J, Coon H, Leppert M, Fink JK (2008) Neuropathy target esterase gene mutations cause motor neuron disease. Am J Hum Genet 82(3):780–785. doi:10.1016/j.ajhg.2007.12.018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Cadieux-Dion M, Turcotte-Gauthier M, Noreau A, Martin C, Meloche C, Gravel M, Drouin CA, Rouleau GA, Nguyen DK, Cossette P (2014) Expanding the clinical phenotype associated with ELOVL4 mutation: study of a large French-Canadian family with autosomal dominant spinocerebellar ataxia and erythrokeratodermia. JAMA Neurol 71(4):470–475. doi:10.1001/jamaneurol.2013.6337

    Article  PubMed  Google Scholar 

  95. Vidal R, Frangione B, Rostagno A, Mead S, Revesz T, Plant G, Ghiso J (1999) A stop-codon mutation in the BRI gene associated with familial British dementia. Nature 399(6738):776–781. doi:10.1038/21637

    Article  CAS  PubMed  Google Scholar 

  96. Vidal R, Revesz T, Rostagno A, Kim E, Holton JL, Bek T, Bojsen-Moller M, Braendgaard H, Plant G, Ghiso J, Frangione B (2000) A decamer duplication in the 3′ region of the BRI gene originates an amyloid peptide that is associated with dementia in a Danish kindred. Proc Natl Acad Sci USA 97(9):4920–4925. doi:10.1073/pnas.080076097

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Takahashi H, Adachi N, Shirafuji T, Danno S, Ueyama T, Vendruscolo M, Shuvaev AN, Sugimoto T, Seki T, Hamada D, Irie K, Hirai H, Sakai N, Saito N (2014) Identification and characterization of PKCgamma, a kinase associated with SCA14, as an amyloidogenic protein. Hum Mol Genet. doi:10.1093/hmg/ddu472

    Google Scholar 

  98. Pyle A, Smertenko T, Bargiela D, Griffin H, Duff J, Appleton M, Douroudis K, Pfeffer G, Santibanez-Koref M, Eglon G, Yu-Wai-Man P, Ramesh V, Horvath R, Chinnery PF (2015) Exome sequencing in undiagnosed inherited and sporadic ataxias. Brain 138(Pt 2):276–283. doi:10.1093/brain/awu348

    Article  PubMed Central  PubMed  Google Scholar 

  99. Gilissen C, Hehir-Kwa JY, Thung DT, van de Vorst M, van Bon BW, Willemsen MH, Kwint M, Janssen IM, Hoischen A, Schenck A, Leach R, Klein R, Tearle R, Bo T, Pfundt R, Yntema HG, de Vries BB, Kleefstra T, Brunner HG, Vissers LE, Veltman JA (2014) Genome sequencing identifies major causes of severe intellectual disability. Nature 511(7509):344–347. doi:10.1038/nature13394

    Article  CAS  PubMed  Google Scholar 

  100. Fokkema IF, Taschner PE, Schaafsma GC, Celli J, Laros JF, den Dunnen JT (2011) LOVD v. 2.0: the next generation in gene variant databases. Hum Mutat 32(5):557–563. doi:10.1002/humu.21438

    Article  CAS  PubMed  Google Scholar 

  101. Bladen CL, Salgado D, Monges S, Foncuberta ME, Kekou K, Kosma K, Dawkins H, Lamont L, Roy AJ, Chamova T, Guergueltcheva V, Chan S, Korngut L, Campbell C, Dai Y, Wang J, Barisic N, Brabec P, Lahdetie J, Walter MC, Schreiber-Katz O, Karcagi V, Garami M, Viswanathan V, Bayat F, Buccella F, Kimura E, Koeks Z, van den Bergen JC, Rodrigues M, Roxburgh R, Lusakowska A, Kostera-Pruszczyk A, Zimowski J, Santos R, Neagu E, Artemieva S, Rasic VM, Vojinovic D, Posada M, Bloetzer C, Jeannet PY, Joncourt F, Diaz-Manera J, Gallardo E, Karaduman AA, Topaloglu H, El Sherif R, Stringer A, Shatillo AV, Martin AS, Peay HL, Bellgard MI, Kirschner J, Flanigan KM, Straub V, Bushby K, Verschuuren J, Aartsma-Rus A, Beroud C, Lochmuller H (2015) The TREAT-NMD DMD global database: analysis of more than 7000 Duchenne muscular dystrophy mutations. Hum Mutat. doi:10.1002/humu.22758

    PubMed Central  PubMed  Google Scholar 

  102. Hammer MB, Eleuch-Fayache G, Schottlaender LV, Nehdi H, Gibbs JR, Arepalli SK, Chong SB, Hernandez DG, Sailer A, Liu G, Mistry PK, Cai H, Shrader G, Sassi C, Bouhlal Y, Houlden H, Hentati F, Amouri R, Singleton AB (2013) Mutations in GBA2 cause autosomal-recessive cerebellar ataxia with spasticity. Am J Hum Genet 92(2):245–251. doi:10.1016/j.ajhg.2012.12.012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Burns R, Majczenko K, Xu J, Peng W, Yapici Z, Dowling JJ, Li JZ, Burmeister M (2014) Homozygous splice mutation in CWF19L1 in a Turkish family with recessive ataxia syndrome. Neurology. doi:10.1212/WNL.0000000000001053

    PubMed Central  Google Scholar 

  104. Synofzik M, Haack TB, Kopajtich R, Gorza M, Rapaport D, Greiner M, Schonfeld C, Freiberg C, Schorr S, Holl RW, Gonzalez MA, Fritsche A, Fallier-Becker P, Zimmermann R, Strom TM, Meitinger T, Zuchner S, Schule R, Schols L, Prokisch H (2014) Absence of BiP co-chaperone DNAJC3 Causes diabetes mellitus and multisystemic neurodegeneration. Am J Hum Genet 95(6):689–697. doi:10.1016/j.ajhg.2014.10.013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Winkelmann J, Lin L, Schormair B, Kornum BR, Faraco J, Plazzi G, Melberg A, Cornelio F, Urban AE, Pizza F, Poli F, Grubert F, Wieland T, Graf E, Hallmayer J, Strom TM, Mignot E (2012) Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy. Hum Mol Genet 21(10):2205–2210. doi:10.1093/hmg/dds035

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Lindquist SG, Duno M, Batbayli M, Puschmann A, Braendgaard H, Mardosiene S, Svenstrup K, Pinborg LH, Vestergaard K, Hjermind LE, Stokholm J, Andersen BB, Johannsen P, Nielsen JE (2013) Corticobasal and ataxia syndromes widen the spectrum of C9ORF72 hexanucleotide expansion disease. Clin Genet 83(3):279–283. doi:10.1111/j.1399-0004.2012.01903.x

    Article  CAS  PubMed  Google Scholar 

  107. Tsoi H, Yu AC, Chen ZS, Ng NK, Chan AY, Yuen LY, Abrigo JM, Tsang SY, Tsui SK, Tong TM, Lo IF, Lam ST, Mok VC, Wong LK, Ngo JC, Lau KF, Chan TF, Chan HY (2014) A novel missense mutation in CCDC88C activates the JNK pathway and causes a dominant form of spinocerebellar ataxia. J Med Genet 51(9):590–595. doi:10.1136/jmedgenet-2014-102333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Lieber DS, Hershman SG, Slate NG, Calvo SE, Sims KB, Schmahmann JD, Mootha VK (2014) Next generation sequencing with copy number variant detection expands the phenotypic spectrum of HSD17B4-deficiency. BMC Med Genet 15:30. doi:10.1186/1471-2350-15-30

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  109. Lines MA, Jobling R, Brady L, Marshall CR, Scherer SW, Rodriguez AR, Lee L, Lang AE, Mestre TA, Wanders RJ, Ferdinandusse S, Tarnopolsky MA (2014) Peroxisomal D-bifunctional protein deficiency: three adults diagnosed by whole-exome sequencing. Neurology 82(11):963–968. doi:10.1212/WNL.0000000000000219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Pierce SB, Walsh T, Chisholm KM, Lee MK, Thornton AM, Fiumara A, Opitz JM, Levy-Lahad E, Klevit RE, King MC (2010) Mutations in the DBP-deficiency protein HSD17B4 cause ovarian dysgenesis, hearing loss, and ataxia of Perrault Syndrome. Am J Hum Genet 87(2):282–288. doi:10.1016/j.ajhg.2010.07.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Caramins M, Colebatch JG, Bainbridge MN, Scherer SS, Abrams CK, Hackett EL, Freidin MM, Jhangiani SN, Wang M, Wu Y, Muzny DM, Lindeman R, Gibbs RA (2013) Exome sequencing identification of a GJB1 missense mutation in a kindred with X-linked spinocerebellar ataxia (SCA-X1). Hum Mol Genet 22(21):4329–4338. doi:10.1093/hmg/ddt282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the French “Agence Nationale de la Recherche” (to GS), the Verum Foundation (to AB and GS), the European Union (OMICs grant under the 7th Framework programme, to AB; the E-Rare programme, to GS), the Fondation Roger de Spoelberch (to AB) and the “Investissements d’avenir” programme (ANR-10-AIHU-06, to AB and GS). MC is the recipient of an “Aspirant” PhD fellowship from the Fonds de la Recherche Scientifique (F.R.S.-FNRS, Belgium).

Conflicts of interest

The authors report no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis Brice.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coutelier, M., Stevanin, G. & Brice, A. Genetic landscape remodelling in spinocerebellar ataxias: the influence of next-generation sequencing. J Neurol 262, 2382–2395 (2015). https://doi.org/10.1007/s00415-015-7725-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-015-7725-4

Keywords

Navigation