Skip to main content
Log in

Time course of ocular surface and lacrimal gland changes in a new scopolamine-induced dry eye model

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

The aim of this study was to set up an animal model of dry eye showing disturbance in several components of the lacrimal functional unit, and to describe the time course of the appearance of clinical signs and inflammatory markers.

Methods

Dry eye was induced in 6-week-old female Lewis rats by a systemic and continuous delivery of scopolamine via osmotic pumps implanted subcutaneously. We first determined the appropriate dose of scopolamine (6, 12.5, or 25 mg/day) for 28 days. In a second set of experiments, we determined markers after 1, 2, 3, 7, 10, 17, or 28 days of a 12.5-mg/day dose. Clinical signs of corneal dryness were evaluated in vivo using fluorescein staining. MHC II expression and mucin Muc5AC production were detected on the conjunctival epithelium using immunostaining. The level of IL-1β, IL-6, TNF-α, and IFN-γ mRNA was evaluated by real-time polymerase chain reaction in conjunctiva and exorbital lacrimal gland (LG). Lipids were extracted from the exorbital LG for fatty acid analysis.

Results

Daily scopolamine doses of 12.5 mg and 25 mg applied for a 28-day period induced keratitis, a decrease in Muc5AC immunostaining density in the conjunctival epithelium, and modifications in the fatty acid composition of the exorbital LG. Animals treated with a 12.5-mg/day dose of scopolamine exhibited an increase in corneal fluorescein staining after 2, 10, and 28 days. All animals exhibited unilateral or bilateral keratitis after 17 days. In the conjunctival epithelium, a significant decrease in Muc5AC immunostaining density was observed at early and late time points, and MHC II expression tended to be increased after 1, 7, 10, and 28 days, without reaching statistical significance. The levels of TNF-α, IL-1β and IL-6 mRNA were increased with scopolamine treatment in both conjunctiva and exorbital LG. Arachidonic acid and the Δ5 desaturase index were significantly increased in the exorbital LG of dry eye animals at each time point.

Conclusions

This systemic and continuous scopolamine-induced model of dry eye in the rat may represent a helpful tool to investigate moderate dry eye, and makes a contribution in the field of dry eye study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Definition and Classification Subcommittee of the International Dry Eye Workshop (2007) The definition and classification of dry eye disease: Report of the Definition and Classification Subcommittee of the International Dry Eye Workshop. Ocul Surf 5(2):75–92

    Google Scholar 

  2. Epidemiology Subcommittee of the International Dry Eye Workshop (2007) The epidemiology of dry eye disease: Report of the Epidemiology Subcommittee of the International Dry Eye Workshop. Ocul Surf 5(2):93–107

    Google Scholar 

  3. Research Subcommittee of the International Dry Eye Workshop (2007) Research in dry eye: Report of the Research Subcommittee of the International Dry Eye Workshop. Ocul Surf 5(2):179–193

    Google Scholar 

  4. Argueso P, Balaram M, Spurr-Michaud S, Keutmann HT, Dana MR, Gipson IK (2002) Decreased levels of the goblet cell mucin muc5ac in tears of patients with sjogren syndrome. Invest Ophthalmol Vis Sci 43(4):1004–1011

    PubMed  Google Scholar 

  5. Barabino S, Chen W, Dana MR (2004) Tear film and ocular surface tests in animal models of dry eye: Uses and limitations. Exp Eye Res 79(5):613–621

    Article  PubMed  CAS  Google Scholar 

  6. Barabino S, Dana MR (2004) Animal models of dry eye: A critical assessment of opportunities and limitations. Invest Ophthalmol Vis Sci 45(6):1641–1646

    Article  PubMed  Google Scholar 

  7. Barabino S, Rolando M, Chen L, Dana MR (2007) Exposure to a dry environment induces strain-specific responses in mice. Exp Eye Res 84(5):973–977

    Article  PubMed  CAS  Google Scholar 

  8. Barabino S, Shen L, Chen L, Rashid S, Rolando M, Dana MR (2005) The controlled-environment chamber: A new mouse model of dry eye. Invest Ophthalmol Vis Sci 46(8):2766–2771

    Article  PubMed  Google Scholar 

  9. Baudouin C (2001) The pathology of dry eye. Surv Ophthalmol 45(Suppl 2):S211–S220

    Article  PubMed  Google Scholar 

  10. Brignole F, Pisella PJ, Goldschild M, De Saint Jean M, Goguel A, Baudouin C (2000) Flow cytometric analysis of inflammatory markers in conjunctival epithelial cells of patients with dry eyes. Invest Ophthalmol Vis Sci 41(6):1356–1363

    PubMed  CAS  Google Scholar 

  11. Calder PC (2002) Dietary modification of inflammation with lipids. Proc Nutr Soc 61(3):345–358

    Article  PubMed  CAS  Google Scholar 

  12. Corrales RM, Villarreal A, Farley W, Stern ME, Li DQ, Pflugfelder SC (2007) Strain-related cytokine profiles on the murine ocular surface in response to desiccating stress. Cornea 26(5):579–584

    PubMed  Google Scholar 

  13. De Paiva CS, Villarreal AL, Corrales RM, Rahman HT, Chang VY, Farley WJ, Stern ME, Niederkorn JY, Li DQ, Pflugfelder SC (2007) Dry eye-induced conjunctival epithelial squamous metaplasia is modulated by interferon-gamma. Invest Ophthalmol Vis Sci 48(6):2553–2560

    Article  PubMed  Google Scholar 

  14. Dursun D, Wang M, Monroy D, Li DQ, Lokeshwar BL, Stern ME, Pflugfelder SC (2002) A mouse model of keratoconjunctivitis sicca. Invest Ophthalmol Vis Sci 43(3):632–638

    PubMed  Google Scholar 

  15. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497–509

    PubMed  CAS  Google Scholar 

  16. Gao J, Morgan G, Tieu D, Schwalb TA, Luo JY, Wheeler LA, Stern ME (2004) Icam-1 expression predisposes ocular tissues to immune-based inflammation in dry eye patients and sjogrens syndrome-like mrl/lpr mice. Exp Eye Res 78(4):823–835

    Article  PubMed  CAS  Google Scholar 

  17. Gipson IK, Hori Y, Argueso P (2004) Character of ocular surface mucins and their alteration in dry eye disease. Ocul Surf 2(2):131–148

    PubMed  Google Scholar 

  18. Huang AJ, Tseng SC, Kenyon KR (1988) Morphogenesis of rat conjunctival goblet cells. Invest Ophthalmol Vis Sci 29(6):969–975

    PubMed  CAS  Google Scholar 

  19. Inatomi T, Spurr-Michaud S, Tisdale AS, Zhan Q, Feldman ST, Gipson IK (1996) Expression of secretory mucin genes by human conjunctival epithelia. Invest Ophthalmol Vis Sci 37(8):1684–1692

    PubMed  CAS  Google Scholar 

  20. Inatomi T, Tisdale AS, Zhan Q, Spurr-Michaud S, Gipson IK (1997) Cloning of rat muc5ac mucin gene: Comparison of its structure and tissue distribution to that of human and mouse homologues. Biochem Biophys Res Commun 236(3):789–797

    Article  PubMed  CAS  Google Scholar 

  21. Jabs DA, Alexander EL, Green WR (1985) Ocular inflammation in autoimmune mrl/mp mice. Invest Ophthalmol Vis Sci 26(9):1223–1229

    PubMed  CAS  Google Scholar 

  22. Jabs DA, Gerard HC, Wei Y, Campbell AL, Hudson AP, Akpek EK, Lee B, Prendergast RA, Whittum-Hudson JA (2004) Inflammatory mediators in autoimmune lacrimal gland disease in mrl/mpj mice. Invest Ophthalmol Vis Sci 45(7):2293–2298

    Article  PubMed  Google Scholar 

  23. Jabs DA, Lee B, Whittum-Hudson J, Prendergast RA (2001) The role of fas-fas ligand-mediated apoptosis in autoimmune lacrimal gland disease in mrl/mpj mice. Invest Ophthalmol Vis Sci 42(2):399–401

    PubMed  CAS  Google Scholar 

  24. Jabs DA, Prendergast RA, Rorer EM, Hudson AP, Whittum-Hudson JA (2001) Cytokines in autoimmune lacrimal gland disease in mrl/mpj mice. Invest Ophthalmol Vis Sci 42(11):2567–2571

    PubMed  CAS  Google Scholar 

  25. Johnson ME, Murphy PJ (2004) Changes in the tear film and ocular surface from dry eye syndrome. Prog Retin Eye Res 23(4):449–474

    Article  PubMed  Google Scholar 

  26. Johnson MM, Swan DD, Surette ME, Stegner J, Chilton T, Fonteh AN, Chilton FH (1997) Dietary supplementation with gamma-linolenic acid alters fatty acid content and eicosanoid production in healthy humans. J Nutr 127(8):1435–1444

    PubMed  CAS  Google Scholar 

  27. Lemp MA (1995) Report of the national eye institute/industry workshop on clinical trials in dry eyes. CLAO J 21(4):221–232

    PubMed  CAS  Google Scholar 

  28. Luo L, Li DQ, Doshi A, Farley W, Corrales RM, Pflugfelder SC (2004) Experimental dry eye stimulates production of inflammatory cytokines and mmp-9 and activates mapk signaling pathways on the ocular surface. Invest Ophthalmol Vis Sci 45(12):4293–4301

    Article  PubMed  Google Scholar 

  29. McKenzie RW, Jumblatt JE, Jumblatt MM (2000) Quantification of muc2 and muc5ac transcripts in human conjunctiva. Invest Ophthalmol Vis Sci 41(3):703–708

    PubMed  CAS  Google Scholar 

  30. Morrison WR, Smith LM (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J Lipid Res 5:600–608

    PubMed  CAS  Google Scholar 

  31. Nakamura S, Shibuya M, Nakashima H, Hisamura R, Masuda N, Imagawa T, Uehara M, Tsubota K (2007) Involvement of oxidative stress on corneal epithelial alterations in a blink-suppressed dry eye. Invest Ophthalmol Vis Sci 48(4):1552–1558

    Article  PubMed  Google Scholar 

  32. Nakamura S, Shibuya M, Nakashima H, Imagawa T, Uehara M, Tsubota K (2005) D-beta-hydroxybutyrate protects against corneal epithelial disorders in a rat dry eye model with jogging board. Invest Ophthalmol Vis Sci 46(7):2379–2387

    Article  PubMed  Google Scholar 

  33. Narayanan S, Miller WL, McDermott AM (2006) Conjunctival cytokine expression in symptomatic moderate dry eye subjects. Invest Ophthalmol Vis Sci 47(6):2445–2450

    Article  PubMed  Google Scholar 

  34. Niederkorn JY, Stern ME, Pflugfelder SC, De Paiva CS, Corrales RM, Gao J, Siemasko K (2006) Desiccating stress induces t cell-mediated sjogren’s syndrome-like lacrimal keratoconjunctivitis. J Immunol 176(7):3950–3957

    PubMed  CAS  Google Scholar 

  35. Oh JY, In YS, Kim MK, Ko JH, Lee HJ, Shin KC, Lee SM, Wee WR, Lee JH, Park M (2007) Protective effect of uridine on cornea in a rabbit dry eye model. Invest Ophthalmol Vis Sci 48(3):1102–1109

    Article  PubMed  Google Scholar 

  36. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time rt-pcr. Nucleic Acids Res 29(9):e45

    Article  PubMed  CAS  Google Scholar 

  37. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (rest) for group-wise comparison and statistical analysis of relative expression results in real-time pcr. Nucleic Acids Res 30(9):e36

    Article  PubMed  Google Scholar 

  38. Rivas L, Oroza MA, Perez-Esteban A, Murube-del-Castillo J (1992) Morphological changes in ocular surface in dry eyes and other disorders by impression cytology. Graefes Arch Clin Exp Ophthalmol 230(4):329–334

    Article  PubMed  CAS  Google Scholar 

  39. Rolando M, Zierhut M (2001) The ocular surface and tear film and their dysfunction in dry eye disease. Surv Ophthalmol 45(Suppl 2):S203–S210

    Article  PubMed  Google Scholar 

  40. Schaumberg DA, Sullivan DA, Buring JE, Dana MR (2003) Prevalence of dry eye syndrome among us women. Am J Ophthalmol 136(2):318–326

    Article  PubMed  Google Scholar 

  41. Stern ME, Beuerman RW, Fox RI, Gao J, Mircheff AK, Pflugfelder SC (1998) The pathology of dry eye: The interaction between the ocular surface and lacrimal glands. Cornea 17(6):584–589

    Article  PubMed  CAS  Google Scholar 

  42. Stern ME, Gao J, Siemasko KF, Beuerman RW, Pflugfelder SC (2004) The role of the lacrimal functional unit in the pathophysiology of dry eye. Exp Eye Res 78(3):409–416

    Article  PubMed  CAS  Google Scholar 

  43. Stern ME, Pflugfelder SC (2004) Inflammation in dry eye. Ocul Surf 2(2):124–130

    PubMed  Google Scholar 

  44. Tocher DR, Bell JG, Farndale BM, Sargent JR (1997) Effects of dietary gamma-linolenic acid-rich borage oil combined with marine fish oils on tissue phospholipid fatty acid composition and production of prostaglandins e and f of the 1-, 2- and 3-series in a marine fish deficient in delta5 fatty acyl desaturase. Prostaglandins Leukot Essent Fatty Acids 57(2):125–134

    Article  PubMed  CAS  Google Scholar 

  45. Yeh S, Song XJ, Farley W, Li DQ, Stern ME, Pflugfelder SC (2003) Apoptosis of ocular surface cells in experimentally induced dry eye. Invest Ophthalmol Vis Sci 44(1):124–129

    Article  PubMed  Google Scholar 

  46. Yoon KC, De Paiva CS, Qi H, Chen Z, Farley WJ, Li DQ, Pflugfelder SC (2007) Expression of th-1 chemokines and chemokine receptors on the ocular surface of c57bl/6 mice: Effects of desiccating stress. Invest Ophthalmol Vis Sci 48(6):2561–2569

    Article  PubMed  Google Scholar 

  47. Zoukhri D (2006) Effect of inflammation on lacrimal gland function. Exp Eye Res 82(5):885–898

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Charles Schneider (UMR LEG, INRA, Epoisses, France) for the technical support concerning the analysis of rMuc5AC immunostaining and fluorescein corneal impregnation pictures; Jacques Bara (U-673, INSERM, St-Antoine Hospital, Paris, France) for providing us the anti-rMuc5AC antibody; and Linda Northrup (English Solutions, Voiron, France) for the English-language editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corinne Joffre.

Additional information

Support

The PhD fellowship of S. Viau was in part supported by a grant from the Regional Council of Burgundy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viau, S., Maire, MA., Pasquis, B. et al. Time course of ocular surface and lacrimal gland changes in a new scopolamine-induced dry eye model. Graefes Arch Clin Exp Ophthalmol 246, 857–867 (2008). https://doi.org/10.1007/s00417-008-0784-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-008-0784-9

Keywords

Navigation