Skip to main content
Log in

New Zealand blackcurrant extract improves cycling performance and fat oxidation in cyclists

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Blackcurrant intake increases peripheral blood flow in humans, potentially by anthocyanin-induced vasodilation which may affect substrate delivery and exercise performance. We examined the effects of New Zealand blackcurrant (NZBC) extract on substrate oxidation, cycling time-trial performance and plasma lactate responses following the time-trial in trained cyclists.

Methods

Using a randomized, double-blind, crossover design, 14 healthy men (age: 38 ± 13 years, height: 178 ± 4 cm, body mass: 77 ± 9 kg, \(\dot{V}\)O2max: 53 ± 6 mL kg−1 min−1, mean ± SD) ingested NZBC extract (300 mg day−1 CurraNZ™ containing 105 mg anthocyanin) or placebo (PL, 300 mg microcrystalline cellulose M102) for 7 days (washout 14 days). On day 7, participants performed 30 min of cycling (3 × 10 min at 45, 55 and 65 % \(\dot{V}\)O2max), followed by a 16.1 km time-trial with lactate sampling during a 20-min passive recovery.

Results

NZBC extract increased fat oxidation at 65 % \(\dot{V}\)O2max by 27 % (P < 0.05) and improved 16.1 km time-trial performance by 2.4 % (NZBC: 1678 ± 108 s, PL: 1722 ± 131 s, P < 0.05). Plasma lactate was higher with NZBC extract immediately following the time-trial (NZBC: 7.06 ± 1.73 mmol L−1, PL: 5.92 ± 1.58 mmol L−1, P < 0.01).

Conclusions

Seven-day intake of New Zealand blackcurrant extract improves 16.1 km cycling time-trial performance and increases fat oxidation during moderate intensity cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CHox:

Carbohydrate oxidation

FATox:

Fat oxidation

NZBC:

New Zealand blackcurrant

PL:

Placebo

\(\dot{V}\)O2max :

Maximal oxygen uptake

WRmax :

Maximum work rate

References

  • Achten J, Jeukendrup AE (2003) The effect of pre-exercise carbohydrate feedings on the intensity that elicits maximal fat oxidation. J Sport Sci 21:1017–1024

    Article  Google Scholar 

  • Achten J, Gleeson M, Jeukendrup AE (2002) Determination of the exercise intensity that elicits maximal fat oxidation. Med Sci Sport Exerc 34:92–97

    Article  Google Scholar 

  • Alvarez-Suarez JM, Giampieri F, Tulipani S, Casoli T, Di Stefano G, González-Paramás AM, Santos-Buelga C, Busco F, Quiles JL, Cordero MD, Bompadre S, Mezzetti B, Battino M (2014) One-month strawberry-rich anthocyanin supplementation ameliorates cardiovascular risk, oxidative stress markers and platelet activation in humans. J Nutr Biochem 25(3):289–294

    Article  CAS  PubMed  Google Scholar 

  • Bailey SJ, Fulford J, Vanhatalo A, Winyard PG, Blackwell JR, Dimenna FJ, Wilkerson DP, Benjamin N, Jones AM (2010) Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J Appl Physiol 109:135–148

    Article  CAS  PubMed  Google Scholar 

  • Bassett DR, Howley ET (2000) Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc 32:70–84

    Article  PubMed  Google Scholar 

  • Benn T, Kim B, Park YK, Wegner CJ, Harness E, Nam TG, Kim DO, Lee JS, Lee JY (2014) Polyphenol-rich blackcurrant extract prevents inflammation in diet-induced obese mice. J Nutr Biochem 25:1019–1025

    Article  CAS  PubMed  Google Scholar 

  • Boushel R, Langberg H, Gemmer C, Olesen J, Crameri R, Scheede C, Sander M, Kjaer M (2002) Combined inhibition of nitric oxide and prostaglandins reduces human skeletal muscle blood flow during exercise. J Physiol 543:691–698

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bowtell JL, Summers DP, Dyer A, Fox P, Mileva KN (2011) Montmorency cherry juice reduces muscle damage caused by intensive strength training. Med Sci Sports Exerc 43:1544–1551

    Article  CAS  PubMed  Google Scholar 

  • Braakhuis AJ, Hopkins WG, Lowe TE (2014) Effects of dietary antioxidants on training and performance in female runners. Eur J Sport Sci 14:160–168

    Article  PubMed  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences. L. Erlbaum Associates, Hillsdale

    Google Scholar 

  • Connolly DA, McHugh MP, Padilla-Zahour OI, Carlson L, Sayers SP (2006) Efficacy of a tart cherry juice blend in preventing the symptoms of muscle damage. Brit J Sport Med 40:679–684

    Article  CAS  Google Scholar 

  • Cureton KJ, Tomporowski PD, Singhal A, Pasley JD, Bigelman KA, Lambourne K, Trilk JL, Mccully KK, Arnaud MJ, Zhao Q (2009) Dietary quercetin supplementation is not ergogenic in untrained men. J Appl Physiol 107:1095–1104

    Article  CAS  PubMed  Google Scholar 

  • Czank C, Cassidy C, Zhang Q, Morrison DJ, Preston T, Kroon PA, Botting NP, Kay CD (2013) Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: a 13C-tracer study1−3. Am J Clin Nutr 97:955–1003

    Article  Google Scholar 

  • De La Cruz AA, Hilbert G, Mengin V, Rivière C, Ollat N, Vitrac C, Bordenave L, Decroocq S, Delaunay JC, Mérillon JM, Monti JP, Gomès E, Richard T (2013) Anthocyanin phytochemical profiles and anti-oxidant activities of Vitis candicans and Vitis doaniana. Phytochem Analysis 24:446–452

    Article  Google Scholar 

  • Gladden LB (2004) Lactate metabolism: a new paradigm for the third millennium. J Physiol 558:5–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horowitz JF, Mora-Rodriguez R, Byerley LO, Coyle EF (1997) Lipolytic suppression following carbohydrate ingestion limits fat oxidation during exercise. Am J Physiol 273:E768–E775

    CAS  PubMed  Google Scholar 

  • Howatson G, McHugh MP, Hill JA, Brouner J, Jewell AP, van Someren KA, Shave RE, Howatson SA (2010) Influence of tart cherry juice on indices of recovery following marathon running. Scan J Med Sci Spor 20:843–852

    Article  CAS  Google Scholar 

  • Howley ET, Bassett DR, Welch HG (1995) Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc 27:1292–1301

    Article  CAS  PubMed  Google Scholar 

  • Jeacocke NA, Burke LM (2010) Methods to standardize dietary intake before performance testing. Int J Sport Nutr Exerc Metab 20:87–103

    CAS  PubMed  Google Scholar 

  • Jeukendrup AE, Wallis GA (2005) Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int J Sports Med 26(Suppl 1):S28–S37

    Article  CAS  PubMed  Google Scholar 

  • Lansley KE, Winyard PG, Bailey SJ, Vanhatalo A, Wilkerson DP, Blackwell JR, Gilchrist M, Benjamin N, Jones AM (2011) Acute dietary nitrate supplementation improves cycling time trial performance. Med Sci Sports Exerc 43:1125–1131

    Article  CAS  PubMed  Google Scholar 

  • Macrae HS, Mefferd KM (2006) Dietary antioxidant supplementation combined with quercetin improves cycling time trial performance. Int J Sport Nutr Exerc Metab 16:405–419

    CAS  PubMed  Google Scholar 

  • Martin S, Andriambeloson E, Takeda K, Andriantsitohaina R (2002) Red wine polyphenols increase calcium in bovine aortic endothelial cells: a basis to elucidate signalling pathways leading to nitric oxide production. Br J Pharmacol 135:1579–1587

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matsumoto H, Takenami E, Iwasaki-Kurashige K, Osada T, Katsumura T, Hamaoka T (2005) Effects of blackcurrant anthocyanin intake on peripheral muscle circulation during typing work in humans. Eur J Appl Physiol 94:36–45

    Article  CAS  PubMed  Google Scholar 

  • Myburgh KH (2014) Polyphenol supplementation: benefits for exercise performance or oxidative stress? Sports Med 44(Suppl 1):S57–S70

    Article  PubMed  Google Scholar 

  • Nagai K, Jiang MH, Hada J, Nagata T, Yajima Y, Yamamoto S, Nishizaki T (2002) (−)-Epigallocatechin gallate protects against NO stress-induced neuronal damage after ischemia by acting as an anti-oxidant. Brain Res 956:319–322

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Matsumoto H, Todoki K (2002) Endothelium-dependent vasorelaxation induced by black currant concentrate in rat thoracic aorta. Jpn J Pharmacol 89:29–35

    Article  CAS  PubMed  Google Scholar 

  • Niki E, Yamamoto Y, Takahashi M, Yamamoto K, Yamamoto Y, Komuro E, Miki M, Yasuda H, Mino M (1988) Free radical-mediated damage of blood and its inhibition by antioxidants. J Nutr Sci Vitaminol 34:507–512

    Article  CAS  PubMed  Google Scholar 

  • Ohguro I, Hiroshi O, Nakazawa M (2007) Effects of anthocyanins in black currant on retinal blood flow circulation of patients with normal tension glaucoma. A pilot study. Hirosaki Med J 59:23–32

    CAS  Google Scholar 

  • Paton CD, Hopkins WG (2006) Variation in performance of elite cyclists from race to race. Eur J Sport Sci 6:25–31

    Article  Google Scholar 

  • Powers SK, Deruisseau KC, Quindry J, Hamilton KL (2004) Dietary antioxidants and exercise. J Sports Sci 22:81–94

    Article  PubMed  Google Scholar 

  • Skarpańska-Stejnborn A, Basta P, Pilaczyńska-Szcześniak Ł (2006) The influence of supplementation with the black currant (Ribes nigrum) extract on selected prooxidative-antioxidative balance parameters in rowers. Stud Phy Cult Tour 13:51–58

    Google Scholar 

  • Tsuda T, Ueno Y, Aoki H, Koda T, Horio F, Takahashi N, Kawada T, Osawa T (2004) Anthocyanin enhances adipocytokine secretion and adipocyte-specific gene expression in isolated rat adipocytes. Biochem Biophys Res Commun 316:149–157

    Article  CAS  PubMed  Google Scholar 

  • Tsuda T, Ueno Y, Kojo H, Yoshikawa T, Osawa T (2005) Gene expression profile of isolated rat adipocytes treated with anthocyanins. Biochim Biophys Acta 1733:137–147

    Article  CAS  PubMed  Google Scholar 

  • Venables MC, Hulston CJ, Cox HR, Jeukendrup AE (2008) Green tea extract ingestion, fat oxidation, and glucose tolerance in healthy humans. Am J Clin Nutr 87:778–784

    CAS  PubMed  Google Scholar 

  • Viña J, Gomez-Cabrera MC, Lloret A, Marquez R, Miñana JB, Pallardó FV, Sastre J (2000) Free radicals in exhaustive physical exercise: mechanism of production, and protection by antioxidants. IUBMB Life 50:271–277

    Article  PubMed  Google Scholar 

  • Wu X, Gu L, Prior RL, Mckay S (2004) Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. J Agric Food Chem 52:7846–7856

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Ling W, Guo H, Song F, Ye Q, Zou T, Li D, Zhang Y, Li G, Xiao Y, Liu F, Li Z, Shi Z, Yang Y (2013) Anti-inflammatory effect of purified dietary anthocyanin in adults with hypercholesterolemia: a randomized controlled trial. Nutr Metab Cardiovas Dis 23:843–849

    Article  CAS  Google Scholar 

  • Ziberna L, Lunder M, Tramer F, Drevenšek G, Passamonti S (2013) The endothelial plasma membrane transporter bilitranslocase mediates rat aortic vasodilation induced by anthocyanins. Nutr Metab Cardiovas Dis 23:68–74

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding and supply of supplement (CurraNZ™) for this study was obtained from Health Currancy Ltd. (United Kingdom). The authors declare no other conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Elisabeth Theodorus Willems.

Additional information

Communicated by Anni Vanhatalo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cook, M.D., Myers, S.D., Blacker, S.D. et al. New Zealand blackcurrant extract improves cycling performance and fat oxidation in cyclists. Eur J Appl Physiol 115, 2357–2365 (2015). https://doi.org/10.1007/s00421-015-3215-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-015-3215-8

Keywords

Navigation