Skip to main content
Log in

Dose effects of New Zealand blackcurrant on substrate oxidation and physiological responses during prolonged cycling

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

It has been previously shown that New Zealand blackcurrant (NZBC) extract increased fat oxidation during short duration cycling. The present study examined the effect of different doses of NZBC extract on substrate oxidation and physiological responses during prolonged cycling.

Methods

Using a randomized counterbalanced Latin-square design, 15 endurance-trained male cyclists (age: 38 ± 12 years, height: 187 ± 5 cm, body mass: 76 ± 10 kg, \(\dot{V}{\text{O}}_{{ 2 {\text{max}}}}\): 56 ± 8 mL kg−1 min−1, and mean ± SD) completed four separate 120-min cycling bouts at 65% \(\dot{V}{\text{O}}_{{ 2 {\text{max}}}}\) after ingesting no dose, or one of three doses (300, 600, or 900 mg day−1) of NZBC extract (CurraNZ™) for 7 days.

Results

A dose effect (P < 0.05) was observed for average fat oxidation (0, 300, 600, and 900 mg day−1 values of 0.63 ± 0.21, 0.70 ± 0.17, 0.73 ± 0.19, and 0.73 ± 0.14 g min−1) and carbohydrate oxidation (0, 300, 600, and 900 mg day−1 values of 1.78 ± 0.51, 1.65 ± 0.48, 1.57 ± 0.44, and 1.56 ± 0.50 g min−1). The individual percentage change of mean fat oxidation was 21.5 and 24.1% for 600 and 900 mg day−1 NZBC extract, respectively, compared to no dose. Heart rate, \(\dot{V}{\text{O}}_{ 2}\), \(\dot{V}{\text{CO}}_{ 2}\), plasma lactate, and glucose were not affected.

Conclusion

Seven-day intake of New Zealand blackcurrant extract demonstrated a dose-dependent effect on increasing fat oxidation during 120-min cycling at 65% \(\dot{V}{\text{O}}_{{ 2 {\text{max}}}}\) in endurance-trained male cyclists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACC:

Acetyl-CoA carboxylase

AMPK:

AMP-activated protein kinase

ANOVA:

Analysis of variance

FAT/CD36:

Fatty acid translocase/cluster of differentiation 36

FMD:

Flow-mediated dilation

GTE:

Green tea extract

NZBC:

New Zealand blackcurrant

RER:

Respiratory exchange ratio

\(\dot{V}{\text{O}}_{ 2}\) :

Oxygen consumption

\(\dot{V}{\text{CO}}_{ 2}\) :

Carbon dioxide production

\(\dot{V}{\text{O}}_{{ 2 {\text{max}}}}\) :

Maximum oxygen uptake

WRmax :

Maximum work rate

References

  • Achten J, Jeukendrup AE (2003) Maximal fat oxidation during exercise in trained men. Int J Sports Med 24(3):603–608

    CAS  PubMed  Google Scholar 

  • Achten J, Gleeson M, Jeukendrup AE (2002) Determination of the exercise intensity that elicits maximal fat oxidation. Med Sci Sports Exerc 34(1):92–97

    Article  PubMed  Google Scholar 

  • Alvarez-Suarez JM, Giampieri F, Tulipani S, Casoli T, Di Stefano G, González-Paramás AM, Santos-Buelga C, Busco F, Quiles JL, Cordero MD, Bompadre S, Mezzetti B, Battino M (2014) One-month strawberry-rich anthocyanin supplementation ameliorates cardiovascular risk, oxidative stress markers and platelet activation in humans. J Nutr Biochem 25(3):289–294

    Article  CAS  PubMed  Google Scholar 

  • Bell PG, Walshe IH, Davison GW, Stevenson EJ, Howatson G (2015) Recovery facilitation with Montmorency cherries following high-intensity, metabolically challenging exercise. Appl Physiol Nutr Metab 40(4):414–423

    Article  PubMed  Google Scholar 

  • Benn T, Kim B, Park YK, Wegner CJ, Harness E, Nam TG, Kim DO, Lee JS, Lee JY (2014) Polyphenol-rich blackcurrant extract prevents inflammation in diet-induced obese mice. J Nutr Biochem 25(3):1019–1025

    Article  CAS  PubMed  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates, Hillsdale, p 567

    Google Scholar 

  • Cook MD, Myers SD, Blacker SD, Willems MET (2015) New Zealand blackcurrant extract improves cycling performance and fat oxidation in cyclists. Eur J Appl Physiol 115(11):2357–2365

    Article  PubMed  Google Scholar 

  • Czank C, Cassidy A, Zhang Q, Morrison DJ, Preston T, Kroon PA, Botting NP, Kay CD (2013) Human metabolism and elimination of the anthocyanin, cyanidin-3-glucose: a (13)C-tracer study. Am J Clin Nutr 97(5):995–1003

    Article  CAS  PubMed  Google Scholar 

  • Eichenberger P, Colombani PC, Mettler S (2009) Effects of 3-week consumption of green tea extracts on whole-body metabolism during cycling exercise in endurance-trained men. Int J Vitam Nutr Res 79(1):24–33

    Article  CAS  PubMed  Google Scholar 

  • Fritzsche RG, Switzer TW, Hodgkinson BJ, Coyle EF (1999) Stroke volume decline during prolonged exercise is influenced by the increase in heart rate. J Appl Physiol 86(3):799–805

    CAS  PubMed  Google Scholar 

  • Guo H, Liu G, Zhong R, Wang Y, Wang D, Xia M (2012) Cyanidin-3-O-β-glucoside regulates fatty acid metabolism via an AMP-activated protein kinase-dependent signaling pathway in human HepG2 cells. Lipids Health Dis 11:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgson AB, Randell RK, Jeukendrup AE (2013) The effect of green tea extract on fat oxidation at rest and during exercise: evidence of efficacy and proposed mechanisms. Adv Nutr 4(2):129–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holloway G, Bezaire V, Heigenhauser GJ, Trandon NN, Glatz JF, Luiken JJ, Bonen A, Spriet LL (2006) Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise. J Physiol 571(1):201–210

    Article  CAS  PubMed  Google Scholar 

  • Howley ET, Bassett DR, Welch HG (1995) Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc 27(9):1292–1301

    Article  CAS  PubMed  Google Scholar 

  • Ishijima T, Fukunaga T, Sakamoto S, Higuchi M (2011) Drift in oxygen consumption during prolonged sub-maximal exercise in subject of different training status. Int J Sport Health Sci 9:64–72

    Article  Google Scholar 

  • Jeukendrup AE, Wallis GA (2005) Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int J Sports Med 26(Suppl 1):S28–S37

    Article  CAS  PubMed  Google Scholar 

  • Jeukendrup AE, Raben A, Gijsen A, Stegen JHCH, Brouns F, Saris WHM, Wagenmakers AJM (1999) Glucose kinetics during prolonged exercise in highly trained human subjects: effect of glucose ingestion. J Physiol 515(2):579–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kay CD, Mazza GJ, Holub BJ (2005) Anthocyanins exist in the circulation primarily as metabolites in adult men. J Nutr 135(11):2582–2588

    CAS  PubMed  Google Scholar 

  • Kurilich AC, Clevidence BA, Britz SJ, Simon PW, Novotny JA (2005) Plasma and urine responses are lower for acylated vs nonacylated anthocyanins from raw and cooked purple carrots. J Agric Food Chem 53(16):6537–6542

    Article  CAS  PubMed  Google Scholar 

  • Luiken JJ, Corrt SL, Willems J, Coumans WA, Bonen A, van der Vusse GJ, Glatz JF (2003) Contraction-induced fatty acid translocase/CD36 translocation in rat cardiac myocytes is mediated through AMP-activated protein kinase signaling. Diabetes 52(7):1627–1634

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto H, Takenami E, Iwasaki-Kurashige K, Osada T, Katsumura T, Hamaoka T (2005) Effects of blackcurrant anthocyanin intake on peripheral muscle circulation during typing work in humans. Eur J Appl Physiol 94(1–2):36–45

    Article  CAS  PubMed  Google Scholar 

  • Neveu V, Perez-Jiménez J, Vos F, Crespy V, du Chaffaut L, Mennen L, Knox C, Eisner R, Cruz J, Wishart D, Scalbert A (2010) Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database (Oxford) Article ID bap024

  • Niki E, Yamaoto Y, Takahashi M, Yamamoto K, Yamamoto Y, Komuro E et al (1988) Free radical-mediated damage of blood and its inhibition by antioxidants. J Nutr Sci Vitaminol 34(5):507–512

    Article  CAS  PubMed  Google Scholar 

  • Ota N, Soga S, Shimotoyodome A, Haramizu S, Inaba M, Murase T, Tokimitsu I (2005) Effects of combination of regular exercise and tea catechins intake on energy expenditure in humans. J Health Sci 51(2):233–236

    Article  CAS  Google Scholar 

  • Perkins IC, Vine SA, Blacker SD, Willems MET (2015) New Zealand blackcurrant extract improves high-intensity intermittent running. Int J Sport Nutr Exerc Metab 25(5):487–493

    Article  PubMed  Google Scholar 

  • Pojer E, Mattivi F, Johnson D, Stockley CS (2013) The case for anthocyanin consumption to promote human health: a review. Compr Rev Food Sci Food Sav 12(5):483–508

    Article  CAS  Google Scholar 

  • Rodriguez-Mateos A, Rendeiro C, Bergillos-Meca T, Tabatabaee S, George TW, Heiss C, Spencer JP (2013) Intake and time dependence of blueberry flavonoid-induced improvement in vascular function: a randomized, controlled, double-blind, crossover intervention study with mechanistic insights into biological activity. Am J Clin Nutr 98:1179–1191

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Mateos A, Feliciano RP, Boeres A, Weber T, Dos Santos CN, Ventura MR, Heiss C (2016) Cranberry (poly)phenol metabolites correlate with improvements in vascular function: a double-blind, randomized, controlled, dose-response, crossover study. Mol Nutr Food Res 60(10):2130–2140. doi:10.1002/mnfr.201600250

    Article  CAS  PubMed  Google Scholar 

  • Roepstorff C, Halberg N, Hillig T, Saha AK, Ruderman NB, Wojtaszewski JF, Richter EA, Kiens B (2005) Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise. Am J Physiol Endocrinol Metab 288(1):133–142

    Article  Google Scholar 

  • Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, Wolfe RR (1993) Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol 265(3 Pt 1):E380–E391

    CAS  PubMed  Google Scholar 

  • Takikawa M, Inoue S, Horio F, Tsuda T (2010) Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of AMP-activated protein kinase in diabetic mice. J Nutr 140(3):527–533

    Article  CAS  PubMed  Google Scholar 

  • Towler MC, Hardie DG (2007) AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 100(3):328–341

    Article  CAS  PubMed  Google Scholar 

  • Venables MC, Hulston CJ, Cox HR, Jeukendrup AE (2008) Green tea extract ingestion, fat oxidation, and glucose tolerance in healthy humans. Am J Clin Nutr 87(3):778–784

    CAS  PubMed  Google Scholar 

  • Vøllestad NK, Blom PC (1985) Effect of varying exercise intensity on glycogen depletion in human muscle fibres. Acta Physiol Scand 125(3):395–405

    Article  PubMed  Google Scholar 

  • Willems MET, Myers SD, Gault ML, Cook MD (2015) Beneficial physiological effects with blackcurrant intake in endurance athletes. Int J Sport Nutr Exerc Metab 25(4):367–374

    Article  PubMed  Google Scholar 

  • Zamora-Ros R, Knaze V, Luján-Barroso L, Slimani N, Romieu I, Fedirko V et al (2011) Estimated dietary intakes of flavonols, flavanones and flavones in the European Prospective Investigation into Cancer and Nutrition (EPIC) 24 h dietary recall cohort. Br J Nutr 106(12):1915–1925

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Xia M, Yang Y, Liu F, Li Z, Hao Y, Mi M, Jin T, Ling W (2011) Purified anthocyanin supplementation improves endothelial function via NO-cGMP activation in hypercholesterolemic individuals. Clin Chem 57(11):1524–1533

    Article  CAS  PubMed  Google Scholar 

  • Ziberna L, Lunder M, Tramer F, Drevenšek G, Passamonti S (2013) The endothelial plasma membrane transporter bilitranslocase mediates rat aortic vasodilation induced by anthocyanins. Nutr Metab Cardiovasc Dis 23(1):68–74

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supply of supplement (CurraNZ™) for this study was obtained from Health Currancy Ltd (United Kingdom). The authors declare no other conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Elisabeth Theodorus Willems.

Additional information

Communicated by Anni Vanhatalo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cook, M.D., Myers, S.D., Gault, M.L. et al. Dose effects of New Zealand blackcurrant on substrate oxidation and physiological responses during prolonged cycling. Eur J Appl Physiol 117, 1207–1216 (2017). https://doi.org/10.1007/s00421-017-3607-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-017-3607-z

Keywords

Navigation