Skip to main content
Log in

Acetylcholine-induced Ca2+ oscillations are modulated by a Ca2+ regulation of InsP3R2 in rat portal vein myocytes

  • Cell and Molecular Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Oscillations of cytosolic Ca2+ levels are believed to have important roles in various metabolic and signalling processes in many cell types. Previously, we have demonstrated that acetylcholine (ACh) evokes Ca2+ oscillations in vascular myocytes expressing InsP3R1 and InsP3R2, whereas transient responses are activated in vascular myocytes expressing InsP3R1 alone. The molecular mechanisms underlying oscillations remain to be described in these native smooth muscle cells. Two major hypotheses are proposed to explain this crucial signalling activity: (1) Ca2+ oscillations are activated by InsP3 oscillations; and (2) Ca2+ oscillations depend on the regulation of the InsP3R by both InsP3 and Ca2+. In the present study, we used a fluorescent InsP3 biosensor and revealed that ACh induced a transient InsP3 production in all myocytes. Moreover, steady concentrations of 3F-InsP3, a poorly hydrolysable analogue of InsP3, and pharmacological activation of PLC evoked Ca2+ oscillations. Increasing cytosolic Ca2+ inhibited the ACh-induced calcium oscillations but not the transient responses and strongly reduced the 3F-InsP3-evoked Ca2+ response in oscillating cells but not in non-oscillating cells. These results suggest that, in native vascular myocytes, ACh-induced InsP3 production is transient and Ca2+ oscillations depend on a Ca2+ modulation of InsP3R2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Berridge MJ (1993) Nature 361:315–25

    Article  PubMed  CAS  Google Scholar 

  2. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  PubMed  CAS  Google Scholar 

  3. Harootunian AT, Kao JP, Paranjape S, Tsien RY (1991) Generation of calcium oscillations in fibroblasts by positive feedback between calcium and IP3. Science 251:75–78

    Article  PubMed  CAS  Google Scholar 

  4. Miyakawa T, Maeda A, Yamazawa T, Hirose K, Kurosaki T, Iino M (1999) Encoding of Ca2+ signals by differential expression of IP3 receptor subtypes. Embo J 18:1303–1308

    Article  PubMed  CAS  Google Scholar 

  5. Morel JL, Fritz N, Lavie JL, Mironneau J (2003) Crucial role of type 2 inositol 1,4,5-trisphosphate receptors for acetylcholine-induced Ca2+ oscillations in vascular myocytes. Arterioscler Thromb Vasc Biol 23:1567–1575

    Article  PubMed  CAS  Google Scholar 

  6. Hirose K, Kadowaki S, Tanabe M, Takeshima H, Iino M (1999) Spatiotemporal dynamics of inositol 1,4,5-trisphosphate that underlies complex Ca2+ mobilization patterns. Science 284:1527–30

    Article  PubMed  CAS  Google Scholar 

  7. Stauffer TP, Ahn S, Meyer T (1998) Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr Biol 8:343–346

    Article  PubMed  CAS  Google Scholar 

  8. Varnai P, Balla T (1998) Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J Cell Biol 143:501–510

    Article  PubMed  CAS  Google Scholar 

  9. Nash MS, Schell MJ, Atkinson PJ, Johnston NR, Nahorski SR, Challiss RA (2002) Determinants of metabotropic glutamate receptor-5-mediated Ca2+ and inositol 1,4,5-trisphosphate oscillation frequency. Receptor density versus agonist concentration. J Biol Chem 277:35947–35960

    Article  PubMed  CAS  Google Scholar 

  10. Nash MS, Young KW, Willars GB, Challiss RA, Nahorski SR (2001) Single-cell imaging of graded Ins(1,4,5)P3 production following G-protein-coupled-receptor activation. Biochem J 356:137–142

    Article  PubMed  CAS  Google Scholar 

  11. Taylor CW, Genazzani AA, Morris SA (1999) Expression of inositol trisphosphate receptors. Cell Calcium 26:237–251

    Article  PubMed  CAS  Google Scholar 

  12. Choe CU, Ehrlich BE (2006) The inositol 1,4,5-trisphosphate receptor (IP3R) and its regulators: sometimes good and sometimes bad teamwork. Sci STKE 2006:re15

    Article  PubMed  Google Scholar 

  13. Morel JL, Macrez-Lepretre N, Mironneau J (1996) Angiotensin II-activated Ca2+ entry-induced release of Ca2+ from intracellular stores in rat portal vein myocytes. Br J Pharmacol 118:73–78

    PubMed  CAS  Google Scholar 

  14. Fritz N, Macrez N, Mironneau J, Jeyakumar LH, Fleischer S, Morel JL (2005) Ryanodine receptor subtype 2 encodes Ca2+ oscillations activated by acetylcholine via the M2 muscarinic receptor/cADP-ribose signalling pathway in duodenum myocytes. J Cell Sci 118:2261–2270

    Article  PubMed  CAS  Google Scholar 

  15. Fabiato A, Fabiato F (1979) Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 75:463–505

    CAS  Google Scholar 

  16. Young KW, Nash MS, Challiss RA, Nahorski SR (2003) Role of Ca2+ feedback on single cell inositol 1,4,5-trisphosphate oscillations mediated by G-protein-coupled receptors. J Biol Chem 278:20753–20760

    Article  PubMed  CAS  Google Scholar 

  17. Politi A, Gaspers LD, Thomas AP, Hofer T (2006) Models of IP3 and Ca2+ oscillations: frequency encoding and identification of underlying feedbacks. Biophys J 90:3120–3133

    Article  PubMed  CAS  Google Scholar 

  18. Sneyd J, Tsaneva-Atanasova K, Reznikov V, Bai Y, Sanderson MJ, Yule DI (2006) A method for determining the dependence of calcium oscillations on inositol trisphosphate oscillations. Proc Natl Acad Sci USA 103:1675–1680

    Article  PubMed  CAS  Google Scholar 

  19. Dupont G, Combettes L (2006) Modelling the effect of specific inositol 1,4,5-trisphosphate receptor isoforms on cellular Ca2+ signals. Biol Cell 98:171–182

    PubMed  CAS  Google Scholar 

  20. Communi D, Vanweyenberg V, Erneux C (1997) d-myo-inositol 1,4,5-trisphosphate 3-kinase A is activated by receptor activation through a calcium:calmodulin-dependent protein kinase II phosphorylation mechanism. Embo J 16:1943–1952

    Article  PubMed  CAS  Google Scholar 

  21. Cuthbertson KS, Chay TR (1991) Modelling receptor-controlled intracellular calcium oscillators. Cell Calcium 12:97–109

    Article  PubMed  CAS  Google Scholar 

  22. Bian JS, McDonald TV. (2007) Phosphatidylinositol 4,5-bisphosphate interactions with the HERG K(+) channel. Pflugers Arch 455:105–113

    Google Scholar 

  23. Kim K, McCully ME, Bhattacharya N, Butler B, Sept D, Cooper JA (2007) Structure/function analysis of the interaction of phosphatidylinositol 4,5-bisphosphate with actin-capping protein: implications for how capping protein binds the actin filament. J Biol Chem 282:5871–5879

    Article  PubMed  CAS  Google Scholar 

  24. Thrower EC, Hagar RE, Ehrlich BE (2001) Regulation of Ins(1,4,5)P3 receptor isoforms by endogenous modulators. Trends Pharmacol Sci 22:580–586

    Article  PubMed  CAS  Google Scholar 

  25. Tu H, Wang Z, Nosyreva E, De Smedt H, Bezprozvanny I (2005) Functional characterization of mammalian inositol 1,4,5-trisphosphate receptor isoforms. Biophys J 88:1046–1055

    Article  PubMed  CAS  Google Scholar 

  26. Tu H, Wang Z, Bezprozvanny I (2005) Modulation of mammalian inositol 1,4,5-trisphosphate receptor isoforms by calcium: a role of calcium sensor region. Biophys J 88:1056–1069

    Article  PubMed  CAS  Google Scholar 

  27. Missiaen L, Parys JB, Weidema AF, Sipma H, Vanlingen S, De Smet P, Callewaert G, De Smedt H (1999) The bell-shaped Ca2+ dependence of the inositol 1,4, 5-trisphosphate-induced Ca2+ release is modulated by Ca2+/calmodulin. J Biol Chem 274:13748–13751

    Article  PubMed  CAS  Google Scholar 

  28. Foskett JK, White C, Cheung KH, Mak DO (2007) Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87:593–658

    Article  PubMed  CAS  Google Scholar 

  29. Joseph SK, Brownell S, Khan MT (2005) Calcium regulation of inositol 1,4,5-trisphosphate receptors. Cell Calcium 38:539–546

    Article  PubMed  CAS  Google Scholar 

  30. Perez JF, Sanderson MJ (2005) The frequency of calcium oscillations induced by 5-HT, ACH, and KCl determine the contraction of smooth muscle cells of intrapulmonary bronchioles. J Gen Physiol 125:535–553

    Article  PubMed  CAS  Google Scholar 

  31. Perez-Zoghbi JF, Sanderson MJ (2007) Endothelin-induced contraction of bronchiole and pulmonary arteriole smooth muscle cells is regulated by intracellular Ca2+ oscillations and Ca2+ sensitization. Am J Physiol Lung Cell Mol Physiol 293:L1000–L1011

    Google Scholar 

  32. Takano T, Han X, Deane R, Zlokovic B, Nedergaard M (2007) Two-photon imaging of astrocytic Ca2+ signaling and the microvasculature in experimental mice models of Alzheimer’s disease. Ann N Y Acad Sci 1097:40–50

    Article  PubMed  CAS  Google Scholar 

  33. Barlow CA, Rose P, Pulver-Kaste RA, Lounsbury KM (2006) Excitation–transcription coupling in smooth muscle. J Physiol 570:59–64

    Article  PubMed  CAS  Google Scholar 

  34. Dolmetsch RE, Lewis RS, Goodnow CC, Healy JI (1997) Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386:855–858

    Article  PubMed  CAS  Google Scholar 

  35. Li W, Llopis J, Whitney M, Zlokarnik G, Tsien RY (1998) Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. Nature 392:936–941

    Article  PubMed  CAS  Google Scholar 

  36. Savignac M, Mellstrom B, Naranjo JR (2007) Calcium-dependent transcription of cytokine genes in T lymphocytes. Pflugers Arch 454:523–33

    Article  PubMed  CAS  Google Scholar 

  37. Li X, Zima AV, Sheikh F, Blatter LA, Chen J (2005) Endothelin-1-induced arrhythmogenic Ca2+ signaling is abolished in atrial myocytes of inositol-1,4,5-trisphosphate(IP3)-receptor type 2-deficient mice. Circ Res 96:1274–1281

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge T. Meyer for giving us the EGFP-PH-PLC construct encoding InsP3 biosensor. This work was supported by grants from Centre National de la Recherche Scientifique (CNRS), Centre National des Etudes Spatiales (CNES) and Association Française contre les myopathies (AFM), France. JL Morel thanks Dr A. Prévot for proofreading. This work is dedicated to Jean-Louis Lavie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Morel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 755 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fritz, N., Mironneau, J., Macrez, N. et al. Acetylcholine-induced Ca2+ oscillations are modulated by a Ca2+ regulation of InsP3R2 in rat portal vein myocytes. Pflugers Arch - Eur J Physiol 456, 277–283 (2008). https://doi.org/10.1007/s00424-007-0379-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0379-z

Keywords

Navigation