Skip to main content
Log in

Up-regulation of ryanodine receptor expression increases the calcium-induced calcium release and spontaneous calcium signals in cerebral arteries from hindlimb unloaded rats

  • Integrative physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Microgravity induces a redistribution of blood volume. Consequently, astronauts' body pressure is modified so that the upright blood pressure gradient is abolished, thereby inducing a modification in cerebral blood pressure. This effect is mimicked in the hindlimb unloaded rat model. After a duration of 8 days of unloading, Ca2+ signals activated by depolarization and inositol-1,4,5-trisphosphate intracellular release were increased in cerebral arteries. In the presence of ryanodine and thapsigargin, the depolarization-induced Ca2+ signals remained increased in hindlimb suspended animals, indicating that Ca2+ influx and Ca2+-induced Ca2+ release mechanism were both increased. Spontaneous Ca2+ waves and localized Ca2+ events were also investigated. Increases in both amplitude and frequency of spontaneous Ca2+ waves were measured in hindlimb suspension conditions. After pharmacological segregation of Ca2+ sparks and Ca2+ sparklets, their kinetic parameters were characterized. Hindlimb suspension induced an increase in the frequencies of both Ca2+ localized events, suggesting an increase of excitability. Labeling with bodipy compounds suggested that voltage-dependent Ca2+ channels and ryanodine receptor expressions were increased. Finally, the expression of the ryanodine receptor subtype 1 (RyR1) was increased in hindlimb unloading conditions. Taken together, these results suggest that RyR1 expression and voltage-dependent Ca2+ channels activity are the focal points of the regulation of Ca2+ signals activated by vasoconstriction in rat cerebral arteries with an increase of the voltage-dependent Ca2+ influx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CICR:

Ca2+-induced Ca2+ release mechanism

HU:

Hindlimb unloaded

CTL:

Control conditions (i.e., not hindlimb unloaded animals)

InsP3R:

Inositol 1,4,5-trisphosphate receptor

RyR:

Ryanodine receptor

RyR1:

Ryanodine receptor subtype 1

VSMC:

Vascular smooth muscle cells

μG:

Microgravity

NO:

Nitric oxide

References

  1. Amberg GC, Navedo MF (2013) Calcium dynamics in vascular smooth muscle. Microcirculation. doi:10.1111/micc.12046

    Google Scholar 

  2. Amberg GC, Navedo MF, Nieves-Cintron M, Molkentin JD, Santana LF (2007) Calcium sparklets regulate local and global calcium in murine arterial smooth muscle. J Physiol 579(Pt 1):187–201. doi:10.1113/jphysiol.2006.124420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bastide B, Conti A, Sorrentino V, Mounier Y (2000) Properties of ryanodine receptor in rat muscles submitted to unloaded conditions. Biochem Biophys Res Commun 270(2):442–447. doi:10.1006/bbrc.2000.2446

    Article  CAS  PubMed  Google Scholar 

  4. Behnke BJ, Stabley JN, McCullough DJ, Davis RT 3rd, Dominguez JM 2nd, Muller-Delp JM, Delp MD (2013) Effects of spaceflight and ground recovery on mesenteric artery and vein constrictor properties in mice. FASEB J 27(1):399–409. doi:10.1096/fj.12-218503

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Bilato C, Curto KA, Monticone RE, Pauly RR, White AJ, Crow MT (1997) The inhibition of vascular smooth muscle cell migration by peptide and antibody antagonists of the alphavbeta3 integrin complex is reversed by activated calcium/calmodulin- dependent protein kinase II. J Clin Invest 100(3):693–704. doi:10.1172/JCI119582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Boittin FX, Macrez N, Halet G, Mironneau J (1999) Norepinephrine-induced Ca(2+) waves depend on InsP(3) and ryanodine receptor activation in vascular myocytes. Am J Physiol 277(1 Pt 1):C139–C151

    CAS  PubMed  Google Scholar 

  7. Colleran PN, Behnke BJ, Wilkerson MK, Donato AJ, Delp MD (2008) Simulated microgravity alters rat mesenteric artery vasoconstrictor dynamics through an intracellular Ca(2+) release mechanism. Am J Physiol Regul Integr Comp Physiol 294(5):R1577–R1585. doi:10.1152/ajpregu.00084.2008

    Article  CAS  PubMed  Google Scholar 

  8. Coussin F, Macrez N, Morel JL, Mironneau J (2000) Requirement of ryanodine receptor subtypes 1 and 2 for Ca(2+)-induced Ca(2+) release in vascular myocytes. J Biol Chem 275(13):9596–9603

    Article  CAS  PubMed  Google Scholar 

  9. Dabertrand F, Fritz N, Mironneau J, Macrez N, Morel JL (2007) Role of RYR3 splice variants in calcium signaling in mouse nonpregnant and pregnant myometrium. Am J Physiol Cell Physiol 293(3):C848–C854. doi:10.1152/ajpcell.00069.2007

    Article  CAS  PubMed  Google Scholar 

  10. Dabertrand F, Mironneau J, Macrez N, Morel JL (2008) Full length ryanodine receptor subtype 3 encodes spontaneous calcium oscillations in native duodenal smooth muscle cells. Cell Calcium 44(2):180–189. doi:10.1016/j.ceca.2007.11.009

    Article  CAS  PubMed  Google Scholar 

  11. Dabertrand F, Morel JL, Sorrentino V, Mironneau J, Mironneau C, Macrez N (2006) Modulation of calcium signalling by dominant negative splice variant of ryanodine receptor subtype 3 in native smooth muscle cells. Cell Calcium 40(1):11–21. doi:10.1016/j.ceca.2006.03.008

    Article  CAS  PubMed  Google Scholar 

  12. Dabertrand F, Porte Y, Macrez N, Morel JL (2012) Spaceflight regulates ryanodine receptor subtype 1 in portal vein myocytes in the opposite way of hypertension. J Appl Physiol 112(3):471–480. doi:10.1152/japplphysiol.00733.2011

    Article  CAS  PubMed  Google Scholar 

  13. De Koninck P, Schulman H (1998) Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science 279(5348):227–230

    Article  PubMed  Google Scholar 

  14. Fritz N, Morel JL, Jeyakumar LH, Fleischer S, Allen PD, Mironneau J, Macrez N (2007) RyR1-specific requirement for depolarization-induced Ca2+ sparks in urinary bladder smooth muscle. J Cell Sci 120(Pt 21):3784–3791. doi:10.1242/jcs.009415

    Article  CAS  PubMed  Google Scholar 

  15. Fu ZJ, Xie MJ, Zhang LF, Cheng HW, Ma J (2004) Differential activation of potassium channels in cerebral and hindquarter arteries of rats during simulated microgravity. Am J Physiol Heart Circ Physiol 287(4):H1505–H1515. doi:10.1152/ajpheart.00143.2004

    Article  CAS  PubMed  Google Scholar 

  16. Geary GG, Krause DN, Purdy RE, Duckles SP (1998) Simulated microgravity increases myogenic tone in rat cerebral arteries. J Appl Physiol 85(5):1615–1621

    CAS  PubMed  Google Scholar 

  17. Georgeon-Chartier C, Menguy C, Prevot A, Morel JL (2012) Effect of aging on calcium signaling in C57Bl6J mouse cerebral arteries. Pflugers Arch. doi:10.1007/s00424-012-1195-7

    PubMed  Google Scholar 

  18. Hargens AR, Watenpaugh DE (1996) Cardiovascular adaptation to spaceflight. Med Sci Sports Exerc 28(8):977–982

    Article  CAS  PubMed  Google Scholar 

  19. Hasser EM, Moffitt JA (2001) Regulation of sympathetic nervous system function after cardiovascular deconditioning. Ann N Y Acad Sci 940:454–468

    Article  CAS  PubMed  Google Scholar 

  20. House SJ, Ginnan RG, Armstrong SE, Singer HA (2007) Calcium/calmodulin-dependent protein kinase II-delta isoform regulation of vascular smooth muscle cell proliferation. Am J Physiol Cell Physiol 292(6):C2276–C2287. doi:10.1152/ajpcell.00606.2006

    Article  CAS  PubMed  Google Scholar 

  21. Iino M, Kasai H, Yamazawa T (1994) Visualization of neural control of intracellular Ca2+ concentration in single vascular smooth muscle cells in situ. EMBO J 13(21):5026–5031

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Ledoux J, Werner ME, Brayden JE, Nelson MT (2006) Calcium-activated potassium channels and the regulation of vascular tone. Physiology (Bethesda) 21:69–78. doi:10.1152/physiol.00040.2005

    Article  CAS  Google Scholar 

  23. Li XQ, Zheng YM, Rathore R, Ma J, Takeshima H, Wang YX (2009) Genetic evidence for functional role of ryanodine receptor 1 in pulmonary artery smooth muscle cells. Pflugers Arch - Eur J Physiol 457(4):771–783. doi:10.1007/s00424-008-0556-8

    Article  CAS  Google Scholar 

  24. Macrez N, Morel JL, Mironneau J (1999) Specific galpha11beta3gamma5 protein involvement in endothelin receptor-induced phosphatidylinositol hydrolysis and Ca2+ release in rat portal vein myocytes. Mol Pharmacol 55(4):684–692

    CAS  PubMed  Google Scholar 

  25. Mariotti M, Maier JA (2008) Gravitational unloading induces an anti-angiogenic phenotype in human microvascular endothelial cells. J Cell Biochem 104(1):129–135. doi:10.1002/jcb.21605

    Article  CAS  PubMed  Google Scholar 

  26. Mironneau J, Coussin F, Morel JL, Barbot C, Jeyakumar LH, Fleischer S, Mironneau C (2001) Calcium signalling through nucleotide receptor P2X1 in rat portal vein myocytes. J Physiol 536(Pt 2):339–350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Mironneau C, Rakotoarisoa L, Sayet I, Mironneau J (1991) Modulation of [3H]dihydropyridine binding by activation of protein kinase C in vascular smooth muscle. Eur J Pharmacol 208(3):223–230

    Article  CAS  PubMed  Google Scholar 

  28. Morel J-L, Boittin F-X, Halet G, Arnaudeau S, Mironneau C, Mironneau J (1997) Effect of a 14-day hindlimb suspension on cytosolic Ca2+ concentration in rat portal vein myocytes. Am J Physiol Heart Circ Physiol 273(6):H2867–H2875

    CAS  Google Scholar 

  29. Morel JL, Boittin FX, Halet G, Arnaudeau S, Mironneau C, Mironneau J (1997) Effect of a 14-day hindlimb suspension on cytosolic Ca2+ concentration in rat portal vein myocytes. Am J Physiol 273(6 Pt 2):H2867–H2875

    CAS  PubMed  Google Scholar 

  30. Morel JL, Macrez-Lepretre N, Mironneau J (1996) Angiotensin II-activated Ca2+ entry-induced release of Ca2+ from intracellular stores in rat portal vein myocytes. Br J Pharmacol 118(1):73–78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Morey-Holton E, Globus RK, Kaplansky A, Durnova G (2005) The hindlimb unloading rat model: literature overview, technique update and comparison with space flight data. Adv Space Biol Med 10:7–40

    Article  PubMed  Google Scholar 

  32. Munevar S, Gangopadhyay SS, Gallant C, Colombo B, Sellke FW, Morgan KG (2008) CaMKIIT287 and T305 regulate history-dependent increases in alpha agonist-induced vascular tone. J Cell Mol Med 12(1):219–226. doi:10.1111/j.1582-4934.2007.00202.x

    Article  CAS  PubMed  Google Scholar 

  33. Navedo MF, Amberg GC (2012) Local regulation of L-type Ca(2+) channel sparklets in arterial smooth muscle. Microcirculation. doi:10.1111/micc.12021

    Google Scholar 

  34. Navedo MF, Amberg GC, Nieves M, Molkentin JD, Santana LF (2006) Mechanisms underlying heterogeneous Ca2+ sparklet activity in arterial smooth muscle. J Gen Physiol 127(6):611–622. doi:10.1085/jgp.200609519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Neylon CB, Richards SM, Larsen MA, Agrotis A, Bobik A (1995) Multiple types of ryanodine receptor/Ca2+ release channels are expressed in vascular smooth muscle. Biochem Biophys Res Commun 215(3):814–821. doi:10.1006/bbrc.1995.2536

    Article  CAS  PubMed  Google Scholar 

  36. Nieves-Cintron M, Amberg GC, Navedo MF, Molkentin JD, Santana LF (2008) The control of Ca2+ influx and NFATc3 signaling in arterial smooth muscle during hypertension. Proc Natl Acad Sci U S A 105(40):15623–15628. doi:10.1073/pnas.0808759105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Norsk P (2005) Cardiovascular and fluid volume control in humans in space. Curr Pharm Biotechnol 6(4):325–330

    Article  CAS  PubMed  Google Scholar 

  38. Pons J, Kitlinska J, Ji H, Lee EW, Zukowska Z (2003) Mitogenic actions of neuropeptide Y in vascular smooth muscle cells: synergetic interactions with the beta-adrenergic system. Can J Physiol Pharmacol 81(2):177–185. doi:10.1139/y02-166

    Article  CAS  PubMed  Google Scholar 

  39. Purdy RE, Duckles SP, Krause DN, Rubera KM, Sara D (1998) Effect of simulated microgravity on vascular contractility. J Appl Physiol 85(4):1307–1315

    CAS  PubMed  Google Scholar 

  40. Stevens L, Sultan KR, Peuker H, Gohlsch B, Mounier Y, Pette D (1999) Time-dependent changes in myosin heavy chain mRNA and protein isoforms in unloaded soleus muscle of rat. Am J Physiol 277(6 Pt 1):C1044–C1049

    CAS  PubMed  Google Scholar 

  41. Taylor CR, Hanna M, Behnke BJ, Stabley JN, McCullough DJ, Davis RT 3rd, Ghosh P, Papadopoulos A, Muller-Delp JM, Delp MD (2013) Spaceflight-induced alterations in cerebral artery vasoconstrictor, mechanical, and structural properties: implications for elevated cerebral perfusion and intracranial pressure. FASEB J Off Publ Fed Am Soc Exp Biol. doi:10.1096/fj.12-222687

    Google Scholar 

  42. Thakali KM, Kharade SV, Sonkusare SK, Rhee SW, Stimers JR, Rusch NJ (2010) Intracellular Ca2+ silences L-type Ca2+ channels in mesenteric veins: mechanism of venous smooth muscle resistance to calcium channel blockers. Circ Res 106(4):739–747. doi:10.1161/CIRCRESAHA.109.206763

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Vaithianathan T, Narayanan D, Asuncion-Chin MT, Jeyakumar LH, Liu J, Fleischer S, Jaggar JH, Dopico AM (2010) Subtype identification and functional characterization of ryanodine receptors in rat cerebral artery myocytes. Am J Physiol Cell Physiol 299(2):C264–C278. doi:10.1152/ajpcell.00318.2009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Wang SQ, Song LS, Lakatta EG, Cheng H (2001) Ca2+ signalling between single L-type Ca2+ channels and ryanodine receptors in heart cells. Nature 410(6828):592–596. doi:10.1038/35069083

    Article  CAS  PubMed  Google Scholar 

  45. Wellman GC, Nelson MT (2003) Signaling between SR and plasmalemma in smooth muscle: sparks and the activation of Ca2+-sensitive ion channels. Cell Calcium 34(3):211–229

    Article  CAS  PubMed  Google Scholar 

  46. Wilkerson MK, Lesniewski LA, Golding EM, Bryan RM Jr, Amin A, Wilson E, Delp MD (2005) Simulated microgravity enhances cerebral artery vasoconstriction and vascular resistance through endothelial nitric oxide mechanism. Am J Physiol Heart Circ Physiol 288(4):H1652–H1661. doi:10.1152/ajpheart.00925.2004

    Article  CAS  PubMed  Google Scholar 

  47. Wray S, Burdyga T (2010) Sarcoplasmic reticulum function in smooth muscle. Physiol Rev 90(1):113–178. doi:10.1152/physrev.00018.2008

    Article  CAS  PubMed  Google Scholar 

  48. Xie MJ, Ma YG, Gao F, Bai YG, Cheng JH, Chang YM, Yu ZB, Ma J (2010) Activation of BKCa channel is associated with increased apoptosis of cerebrovascular smooth muscle cells in simulated microgravity rats. Am J Physiol Cell Physiol 298(6):C1489–C1500. doi:10.1152/ajpcell.00474.2009

    Article  CAS  PubMed  Google Scholar 

  49. Xie MJ, Zhang LF, Ma J, Cheng HW (2005) Functional alterations in cerebrovascular K(+) and Ca(2+) channels are comparable between simulated microgravity rat and SHR. Am J Physiol Heart Circ Physiol 289(3):H1265–H1276. doi:10.1152/ajpheart.00074.2005

    Article  CAS  PubMed  Google Scholar 

  50. Xue JH, Chen LH, Zhao HZ, Pu YD, Feng HZ, Ma YG, Ma J, Chang YM, Zhang ZM, Xie MJ (2011) Differential regulation and recovery of intracellular Ca2+ in cerebral and small mesenteric arterial smooth muscle cells of simulated microgravity rat. PloS One 6(5):e19775. doi:10.1371/journal.pone.0019775

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Xue JH, Zhang LF, Ma J, Xie MJ (2007) Differential regulation of L-type Ca2+ channels in cerebral and mesenteric arteries after simulated microgravity in rats and its intervention by standing. Am J Physiol Heart Circ Physiol 293(1):H691–H701. doi:10.1152/ajpheart.01229.2006

    Article  CAS  PubMed  Google Scholar 

  52. Zhang LF (2001) Vascular adaptation to microgravity: what have we learned? J Appl Physiol 91(6):2415–2430

    CAS  PubMed  Google Scholar 

  53. Zhang LN, Zhang LF, Ma J (2001) Simulated microgravity enhances vasoconstrictor responsiveness of rat basilar artery. J Appl Physiol 90(6):2296–2305

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We particularly thank Dr. B. Yvert for spike2 analysis script to discriminate localized Ca2+ events; Laure Diaz, masteral student, and Nathalie Biendon for technical support and J. Mironneau for helpful discussion. JLM is the manager of the project. FD and JLM equally participated to the conception, design of the experiments, collection, analysis and interpretation of Ca2+ imaging. YP performed qPCR experiments. NM and AP participated to interpretation of data and writing, respectively. This work was supported by grants from the Centre National d'Etudes Spatiales (CNES), the Agence Nationale pour la Recherche (AdapHyG, n° ANR-09-BLAN-0148) and a postdoctoral fellowship from CNES to F. Dabertrand. Equipment (confocal microscopes, thermocycler) was financed by Conseil Régional d'Aquitaine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Morel.

Additional information

J.-L. Morel and F. Dabertrand had equal participation in this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morel, JL., Dabertrand, F., Porte, Y. et al. Up-regulation of ryanodine receptor expression increases the calcium-induced calcium release and spontaneous calcium signals in cerebral arteries from hindlimb unloaded rats. Pflugers Arch - Eur J Physiol 466, 1517–1528 (2014). https://doi.org/10.1007/s00424-013-1387-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1387-9

Keywords

Navigation