Skip to main content

Advertisement

Log in

Consequences of large interindividual variability for human brain atlases: converging macroscopical imaging and microscopical neuroanatomy

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

In human brain imaging studies, it is common practice to use the Talairach stereotaxic reference system for signifying the convergence of brain function and structure. In nearly all neuroimaging reports, the studied cortical areas are specified further with a Brodmann Area (BA) number. This specification is based upon macroscopic extrapolation from Brodmann’s projection maps into the Talairach atlas rather than upon a real microscopic cytoarchitectonic study. In this review we argue that such a specification of Brodmann area(s) via the Talairach atlas is not appropriate. Cytoarchitectonic studies reviewed in this paper show large interindividual differences in 3-D location of primary sensory cortical areas (visual cortex) as well as heteromodal associational areas (prefrontal cortical areas), even after correction for differences in brain size and shape. Thus, the simple use of Brodmann cortical areas derived from the Talairach atlas can lead to erroneous results in the specification of pertinent BA. This in turn can further lead to wrong hypotheses on brain system(s) involved in normal functions or in specific brain disorders. In addition, we will briefly discuss the different ‘Brodmann’ nomenclatures which are in use for the cerebral cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amunts K, Schleicher A, Bürgel U, Mohlberg H, Uylings HBM, Zilles K (1999) Broca’s region re-visited: cytoarchitecture and intersubject variability. J Comp Neurol 412:319–341

    Article  PubMed  CAS  Google Scholar 

  • Amunts K, Malikovic A, Mohlberg H, Schormann T, Zilles K (2000) Brodmann’s areas 17 and 18 brought into stereotactic space—where and how variable? NeuroImage 11:66–84

    Article  PubMed  CAS  Google Scholar 

  • Amunts K, Weiss PH, Mohlberg H, Pieperhoff P, Gurd J, Shah JN, Marshall CJ, Fink GR, Zilles K (2004) Analysis of the neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space—the role of Brodmann’s areas 44 and 45. Neuroimage 22:42–56

    Article  PubMed  Google Scholar 

  • Baaré WFC, Hulshoff Pol HE, Boomsma DI, Posthuma D, De Geus EJC, Schnack HG, Van Haren NEM, Van Oel CJ, Kahn RS (2001) Quantitative genetic modeling of variation in human brain morphology. Cereb Cortex 11:816–824

    Article  PubMed  Google Scholar 

  • Beck E (1949) A cytoarchitectural investigation into the boundaries of cortical areas 13 and 14 in the human brain. J Anat 83:147–157

    PubMed  CAS  Google Scholar 

  • Bozkurt A, Zilles K, Schleicher A, Kamper L, Sanz Arigita E, Uylings HBM, Kötter R (2005) Distributions of transmitter receptors in the macaque cingulate cortex. NeuroImage 25:219–229

    Article  PubMed  Google Scholar 

  • Braak H (1980) Architectonics of the human telencephalic cortex. Studies of brain function, vol 4. Springer, Berlin Heidelberg New York, pp 147

  • Brett M, Johnsrude IS, Owen AM (2002) The problem of functional localization in the human brain. Nat Rev Neurosci 3:243–249

    Article  PubMed  CAS  Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde, Barth Verlag, Leipzig, 324 pp

    Google Scholar 

  • Brodmann K (1914) Physiologie des Gehirns. In: Von Bruns P (ed) Neue Deutsche Chirurgie, vol 11. Enke, Stuttgart, pp 85–426

  • Chau W, McIntosh AR (2005) The Talairach coordinate of a point in the MNI space: how to interpret it. NeuroImage 25:408–416

    Article  PubMed  Google Scholar 

  • Crivello F, Schormann T, Tzourio-Mazoyer N, Roland PE, Zilles K, Mazoyer BM (2002) Comparison of spatial normalization procedures and their impact on functional maps. Hum Brain Mapp 16:228–250

    Article  PubMed  Google Scholar 

  • Crum WR, Griffin LD, Hill DLG, Hawkes DJ (2003) Zen and the art of medical image registration: correspondence, homology, and quality. NeuroImage 20:1425–1437

    Article  PubMed  CAS  Google Scholar 

  • Duvernoy H (1991) The human brain. Surface, three-dimensional sectional anatomy and MRI. Springer, Berlin Heidelberg New York, 554 pp

    Google Scholar 

  • Filimonov IN (1932) Uber die Variabilität der Grosshirn rindenstruktur Mitt 2: Regio occipitalis beim erwachsenen Menschen. J Psychol Neurol 44:1–96

    Google Scholar 

  • Frackowiak RSJ, Friston KJ, Frith CD, Dolan RJ, Mazziotta JC (1997) Human brain function. Academic, San Diego, pp 528

    Google Scholar 

  • Geyer S, Ledberg A, Schleicher A, Kinomura S, Schormann T, Bürgel U, Klingberg T, Larsson J, Zilles K, Roland PE (1996) Two different areas within the primary motor cortex of man. Nature 382:805–807

    Article  PubMed  CAS  Google Scholar 

  • Geyer S, Schleicher A, Zilles K (1999) Areas 3a, 3b, and 1 of human primary somatosensory cortex: 1. Microstructural organization and interindividual variability. NeuroImage 10:63–83

    Article  PubMed  CAS  Google Scholar 

  • Geyer S, Schormann T, Mohlberg H, Zilles K (2000) Areas 3a, 3b, and 1 of human primary somatosensory cortex: II. Spatial normalization to standard anatomical space. Neuroimage 11:684–696

    Article  PubMed  CAS  Google Scholar 

  • Gur RC, Mozley PD, Resnick S, Gottlieb G, Kohn M, Zimmerman R, Herman G, Atlas S, Grossman R, Berreta D, Erwin R, Gur RE (1991) Gender differences in age effect on brain atrophy measured by MRI. Proc Natl Acad Sci USA 88:2845–2849

    Article  PubMed  CAS  Google Scholar 

  • Henery CC, Mayhew TM (1989) The cerebrum and cerebellum of the fixed human brain: efficient and unbiased estimates of volumes and cortical surface areas. J Anat 167:167–180

    PubMed  CAS  Google Scholar 

  • Kandel ER, Schwartz JH, Jessel TM (2000) Principles of neural sciences, 4th edn. Mcgraw Hill, Newyork, pp 1414

  • Kochunov P, Fox P, Lancaster J, Tan LH, Amunts K, Zilles K, Mazziotta J, Gao JH (2003) Localized morphological brain differences between English-speaking Caucasians and Chinese-speaking Asians: new evidence of anatomical plasticity. Neuroreport 14(7):961–964

    Article  PubMed  CAS  Google Scholar 

  • Kononova EP (1935) The variability of structure of the cortex of the brain: inferior frontal gyrus of adult man (in Russian). Brain Res Inst Publ 1:49–118

    Google Scholar 

  • Kötter R, Stephan KE, Palomero-Gallagher N, Geyer S, Schleicher A, Zilles K. (2001) Multimodal characterisation of cortical areas by multivariate analyses of receptor binding and connectivity data. Anat Embryol 204:333–350

    Article  PubMed  Google Scholar 

  • Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, Kochunov PV, Nickerson D, Mikiten SA, Fox PT (2000) Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 10:120–131

    Article  PubMed  CAS  Google Scholar 

  • Luders E, Narr KI, Thompson PM, Rex DE, Jancke L, Steinmetz H, Toga AW (2004) Gender differences in cortical complexity. Nature Neurosci 7:799–800

    Article  PubMed  CAS  Google Scholar 

  • Mai JK, Assheuer J, Paxinos G (1997) Atlas of the human brain. Academic, San Diego, pp 328

    Google Scholar 

  • Mazziotta JC, Toga AW, Evans A, Fox P, Lancaster J (1995) A probabilistic atlas of the human brain: theory and rationale for its development. NeuroImage 2:89–101

    Article  PubMed  CAS  Google Scholar 

  • Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T, Zilles K (2001) Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. NeuroImage 13:684–701

    Article  PubMed  CAS  Google Scholar 

  • Nieuwenhuys R, Voogd J, Van Huijzen Chr (1988) The human central nervous system. A synopsis and atlas, 3rd ed. Springer, Berlin Heidelberg New York, pp 437

    Google Scholar 

  • Öngür D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10:206–219

    Article  PubMed  Google Scholar 

  • Öngür D, Ferry AT, Price JL (2003) Architectonic subdivision of the human orbital and medial prefrontal cortex. J Comp Neurol 460:425–449

    Article  PubMed  Google Scholar 

  • Ono M, Kubik S, Abernathy CD (1990) Atlas of the cerebral sulci. Georg Thieme Verlag, Stuttgart, pp 218

    Google Scholar 

  • Petrides M, Pandya DN (1994) Comparative architectonic analysis of the human and the macaque frontal cortex. In: Boller F, Grafman J (eds) Handbook of neuropsychology, vol 9. Elsevier, Amsterdam, pp 17–58

  • Petrides M, Pandya DN (2001) Comparative analysis of the human and macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur J Neurosci 16:291–310

    Article  Google Scholar 

  • Rademacher J, Caviness VS, Steinmetz H, Galaburda AM (1993) Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb Cortex 3:313–329

    Article  PubMed  CAS  Google Scholar 

  • Rademacher J, Morosan P, Schormann T, Schleicher A, Werner C, Freund H-J, Zilles K (2001) Probabilistic mapping and volume measurement of human primary auditory cortex. NeuroImage 13:669–683

    Article  PubMed  CAS  Google Scholar 

  • Rajkowska G, Goldman-Rakic PS (1995a) Cytoarchitectonic definition of prefrontal areas in the normal human cortex: I Quantitative criteria for distinguishing areas 9 and 46. Cereb Cortex 4:307–322

    Article  Google Scholar 

  • Rajkowska G, Goldman-Rakic PS (1995b) Cytoarchitectonic definition of prefrontal areas in the normal human cortex: II Variability in locations of areas 9 and 46. Cereb Cortex 4:323–337

    Article  Google Scholar 

  • Rajkowska G, Selemon LD, Goldman-Rakic PS (1998) Neuronal and glial somal size in prefrontal cortex: a postmortem study of schizophrenia and Huntington’s disease. Arch Gen Psych 55:215–224

    Article  CAS  Google Scholar 

  • Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY, Overholser JC, Roth BL, Stockmeier CA (1999) Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 45:1085–1098

    Article  PubMed  CAS  Google Scholar 

  • Retzius G (1896) Das Menschen Hirn. Teil 1 Text. Norstedt& Söner, Stockholm, pp 167

    Google Scholar 

  • Roland PE, Zilles K (1998) Structural divisions and functional fields in the human cerebral cortex. Brain Res Rev 26:87–105

    Article  PubMed  CAS  Google Scholar 

  • Roland PE, Svensson G, Lindeberg T, Risch T. Baumann P, Dehmel A, Frederiksson J, Halldorson H, Forsberg L, Young J, Zilles K (2001) A database generator for human brain imaging. Trends Neurosci 24:562–564

    Article  PubMed  CAS  Google Scholar 

  • Sarkisov SA (1967) Grundriss der Struktur und Funktion des Gehirns. VEB Verlag, Berlin, pp 361

    Google Scholar 

  • Sarkisov SA, Filimonov IN, Kononova EP, Preobraschenskaja IS, Kukuev LA (1955) Atlas of cytoarchitectonics of the human cerebral cortex. Medzig, Moscow (in Russian)

    Google Scholar 

  • Schleicher A, Amunts K, Geyer S, Kowalski T, Schormann T, Palomero-Gallagher N, Zilles K (2000) A stereological approach to human cortical architecture: identification and delineation of cortical areas. J Chem Neuroanat 20:31–47

    Article  PubMed  CAS  Google Scholar 

  • Schormann T, Zilles K (1998) Three-dimensional linear and nonlinear transformations: an integration of light microscopical and MRI data. Human Brain Mapp 6:339–347

    Article  CAS  Google Scholar 

  • Selemon LD, Rajkowska G, Goldman-Rakic PS (1995) Abnormally high neuronal density in the schizophrenic cortex A morphometric analysis of prefrontal area 9 and occipital area 17. Arch Gen Psych 52:805–818

    CAS  Google Scholar 

  • Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TI, Rosen BR, Tootell RBH (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–893

    Article  PubMed  CAS  Google Scholar 

  • Sherwood CC, Holloway RL, Erwin JM, Schleicher A, Zilles K, Hof PR (2004) Cortical orofacial motor representation in Old World monkeys, great apes, and humans. I Quantitative analysis of cytoarchitecture. Brain Behav Evol 63:61–81

    Article  PubMed  Google Scholar 

  • Steinmetz H, Fürst G, Freund H-J (1990) Variation of perisylvyan and calcarine anatomic landmarks within stereotaxic proportional coordinates. Am J NeuroRadiol 11:1123–1130

    PubMed  CAS  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. 3-D proportioned system: an approach to cerebral imaging. Thieme-Verlag, Stuttgart, 122pp

    Google Scholar 

  • Thompson PM, Schwart C, Lin RT, Khan AA, Toga AW (1996) Three-dimensional statistical analysis of sulcal variability in the human brain. J Neurosci 16:4261–4274

    PubMed  CAS  Google Scholar 

  • Toga AW (2002) Neuroimage databases: the good, the bad and the ugly. Nature Rev Neurosci 3:302–309

    Article  CAS  Google Scholar 

  • Uylings HBM (2002) About assumptions in estimation of density of neurons and glial cells. Biol Psychiatry 51:840–842

    Article  PubMed  Google Scholar 

  • Uylings HBM, De Brabander JM (2002) Neuronal changes in normal human aging and Alzheimer’s disease. Brain Cogn 49:268–276

    Article  PubMed  Google Scholar 

  • Uylings HBM, Zilles K, Rajkowska G (1999a) Optimal staining methods for delineation of cortical areas and neuron counts in human brains. NeuroImage 9:439–445

    Article  PubMed  CAS  Google Scholar 

  • Uylings HBM, Malofeeva LI, Bogolepova IN, Amunts K, Zilles K (1999b) Broca’s language area from a neuroanatomical and developmental perspective. In: Brown CM, Hagoort P (eds) The neurocognition of language. Oxford University Press, Oxford, pp 319–336

    Google Scholar 

  • Uylings HBM, Sanz-Arigita E, De Vos K, Smeets WJAJ, Pool CW, Amunts K, Rajkowska G, Zilles K (2000) The importance of a human 3D database and atlas for studies of prefrontal and thalamic functions. In: Uylings HBM, Van Eden CG, De Bruin JPC, Feenstra MPG, Pennartz CMA (eds) Progress in brain research, vol. 126, Elsevier, Amsterdam, pp 357–368

  • Uylings HBM, Jacobsen AM, Zilles K, Amunts K (2005) Left-right asymmetry in volume and number of neurons in adult Broca’s area. Cortex (in press)

  • Van Essen DC (2002) Windows on the brain: the emerging role of atlases and databases in neuroscience. Curr Opin Neurobiol 12:574–579

    Article  PubMed  Google Scholar 

  • Walker EA (1940) A cytoarchitectural study of the prefrontal area of the macaque monkey. J Comp Neurol 73:59–86

    Article  Google Scholar 

  • Walters NB, Egan GF, Kril JJ, Kean M, Waley P, Jenkinson M, Watson JDG (2003) In vivo identification of human cortical areas using high resolution MRI: an approach to structure-function correlation. Proc Nat Acad Sci 100:2981–2986

    Article  PubMed  CAS  Google Scholar 

  • Woolsey TA, Hanaway J, Gado MH (2003) The brain atlas. A visual guide to the human central nervous system, 2nd edn. Wiley, Hoboken, pp 249

    Google Scholar 

  • Yücel M, Stuart GW, Maruff P, Velakoulis D, Crowe SF, Savage G, Pantelis C (2001) Hemispheric and gender-related differences in the gross morphology of the anterior cingulate/paracingulate cortex in normal volunteers: an MRI morphometric study. Cereb Cortex 11:17–25

    Article  PubMed  Google Scholar 

  • Zilles K, Palomero-Gallagher N (2001) Cyto-, myelo- and receptor architectonics of the human parietal cortex. NeuroImage 14:8–20

    Article  Google Scholar 

  • Zilles K, Armstrong E, Schleicher A, Kretschmann H-J (1988) The human pattern of gyrification in the cerebral cortex. Anat Embryol 179:173–179

    Article  PubMed  CAS  Google Scholar 

  • Zilles K, Schlaug G, Matelli M, Luppino G, Schleicher A, Qü M, Dabringhaus A, Seitz R, Roland PE (1995) Mapping of human and macaque sensorimotor areas by integrating architectonic, transmitter receptor, MRI and PET data. J Anat 187:515–537

    PubMed  CAS  Google Scholar 

  • Zilles K, Schleicher A, Langemann C, Amunts K, Morosan P, Palomero-Gallagher N, Schormann T, Mohlberg H, Bürgel U, Steinmetz H, Schlaug G, Roland PE (1997) Quantitative analysis of sulci in the human cerebral cortex: development, regional heterogeneity, gender difference, asymmetry, intersubject variability and cortical architecture. Human Brain Mapp 5:218–221

    Article  Google Scholar 

  • Zilles K, Kawashima R, Dabringhaus A, Fukuda H, Schormann T (2001) Hemispheric shape of European and Japanese brains: 3-D MRI analysis of intersubject variability, ethnical, and gender differences. NeuroImage 13:262–271

    Article  PubMed  CAS  Google Scholar 

  • Zilles K, Palomero-Gallagher N, Grefkes C, Scheperjans F, Boy C, Amunts K, Schleicher A (2002a) Architectonics of the human cerebral cortex and transmitter receptor fingerprints: reconciling functional neuroanatomy and neurochemistry. Eur Neuropsychopharmacol 12:587–599

    Article  PubMed  CAS  Google Scholar 

  • Zilles K, Schleicher A, Palomero-Gallagher N, Amunts K (2002b) Quantitative analysis of cyto- and receptorarchitecture of the human brain. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods, 2nd edn. Academic, New York, pp 573–602

    Google Scholar 

Download references

Acknowledgments

We would like to thank Mrs. W.T.P. Verweij for secretarial assistance and Mr. G. Van der Meulen for photography. The different studies on which this short review is based were supported by various grants: NATO grant CRG 9671225 (HBMU, GR), by NIH grants# MH 55872 and MH61578 (GR), by grant of Hersenstichting Ned. (HBMU, ES) and by grant of RIKEN, Japan (HBMU,ES) and by the National Institute of Biomedical Imaging and Bioengineering, the National Institute of Neurological Disorders and Stroke, and the National Institute of Mental Health (KZ, KA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. B. M. Uylings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uylings, H.B.M., Rajkowska, G., Sanz-Arigita, E. et al. Consequences of large interindividual variability for human brain atlases: converging macroscopical imaging and microscopical neuroanatomy. Anat Embryol 210, 423–431 (2005). https://doi.org/10.1007/s00429-005-0042-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-005-0042-4

Keywords

Navigation